TensorFlow2 Classification Model Zoo playing with TensorFlow2 on the CIFAR-10 dataset.

Overview

Training CIFAR-10 with TensorFlow2(TF2)

TensorFlow 2.4 Python 3.8 License

TensorFlow2 Classification Model Zoo. I'm playing with TensorFlow2 on the CIFAR-10 dataset.

Architectures

Prerequisites

  • Python 3.8+
  • TensorFlow 2.4.0+

Training

Start training with:

python train.py --model resnet18

You can manually resume the training with:

python train.py --model resnet18 --resume

Testing

python test.py --model resnet18

Accuracy

Model Acc. Param.
LeNet 67.85% 0.06M
AlexNet 78.81% 21.6M
VGG11 92.61% 9.2M
VGG13 94.31% 9.4M
VGG16 94.27% 14.7M
VGG19 93.65% 20.1M
ResNet18 95.37% 11.2M
ResNet34 95.48% 21.3M
ResNet50 95.41% 23.6M
ResNet101 95.44% 42.6M
ResNet152 95.29% 58.3M
DenseNet121 95.37% 7.0M
DenseNet169 95.10% 12.7M
DenseNet201 94.79% 18.3M
PreAct-ResNet18 94.08% 11.2M
PreAct-ResNet34 94.76% 21.3M
PreAct-ResNet50 94.81% 23.6M
PreAct-ResNet101 94.95% 42.6M
PreAct-ResNet152 95.07% 58.3M
SE-ResNet18 95.44% 11.3M
SE-ResNet34 95.30% 21.5M
SE-ResNet50 95.76% 26.1M
SE-ResNet101 95.40% 47.3M
SE-ResNet152 95.29% 64.9M
SE-PreAct-ResNet18 94.54% 11.3M
SE-PreAct-ResNet34 95.30% 21.5M
SE-PreAct-ResNet50 94.22% 26.1M
SE-PreAct-ResNet101 94.34% 47.3M
SE-PreAct-ResNet152 94.28% 64.9M
MobileNet 92.34% 3.2M
MobileNetV2 94.03% 2.3M

Note

All abovementioned models are available. To specify the model, please use the model name without the hyphen. For instance, to train with SE-PreAct-ResNet18, you can run the following script:

python train.py --model sepreactresnet18

If you suffer from loss=nan issue, you can circumvent it by using a smaller learning rate, i.e.

python train.py --model sepreactresnet18 --lr 5e-2
Owner
Chia-Hung Yuan
Chia-Hung Yuan
Demos of essentia classifiers hosted on replicate.ai

essentia-replicate-demos Demos of Essentia models hosted on replicate.ai's MTG site. The models Check our site for a complete list of the models avail

Music Technology Group - Universitat Pompeu Fabra 12 Nov 14, 2022
Robot Reinforcement Learning on the Constraint Manifold

Implementation of "Robot Reinforcement Learning on the Constraint Manifold"

31 Dec 05, 2022
(IEEE TIP 2021) Regularized Densely-connected Pyramid Network for Salient Instance Segmentation

RDPNet IEEE TIP 2021: Regularized Densely-connected Pyramid Network for Salient Instance Segmentation PyTorch training and testing code are available.

Yu-Huan Wu 41 Oct 21, 2022
Fair Recommendation in Two-Sided Platforms

Fair Recommendation in Two-Sided Platforms

gourabgggg 1 Nov 10, 2021
All of the figures and notebooks for my deep learning book, for free!

"Deep Learning - A Visual Approach" by Andrew Glassner This is the official repo for my book from No Starch Press. Ordering the book My book is called

Andrew Glassner 227 Jan 04, 2023
A hybrid SOTA solution of LiDAR panoptic segmentation with C++ implementations of point cloud clustering algorithms. ICCV21, Workshop on Traditional Computer Vision in the Age of Deep Learning

ICCVW21-TradiCV-Survey-of-LiDAR-Cluster Motivation In contrast to popular end-to-end deep learning LiDAR panoptic segmentation solutions, we propose a

YimingZhao 103 Nov 22, 2022
Reimplementation of Dynamic Multi-scale filters for Semantic Segmentation.

Paddle implementation of Dynamic Multi-scale filters for Semantic Segmentation.

Hongqiang.Wang 2 Nov 01, 2021
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
Dynamic hair modeling from monocular videos using deep neural networks

Dynamic Hair Modeling The source code of the networks for our paper "Dynamic hair modeling from monocular videos using deep neural networks" (SIGGRAPH

53 Oct 18, 2022
Rainbow is all you need! A step-by-step tutorial from DQN to Rainbow

Do you want a RL agent nicely moving on Atari? Rainbow is all you need! This is a step-by-step tutorial from DQN to Rainbow. Every chapter contains bo

Jinwoo Park (Curt) 1.4k Dec 29, 2022
ruptures: change point detection in Python

Welcome to ruptures ruptures is a Python library for off-line change point detection. This package provides methods for the analysis and segmentation

Charles T. 1.1k Jan 03, 2023
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [PaddlePaddle Implementation] Homepage of paper: Paint Transformer: Fee

442 Dec 16, 2022
OpenL3: Open-source deep audio and image embeddings

OpenL3 OpenL3 is an open-source Python library for computing deep audio and image embeddings. Please refer to the documentation for detailed instructi

Music and Audio Research Laboratory - NYU 326 Jan 02, 2023
Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Graph Regularized Residual Subspace Clustering Network for hyperspectral image clustering

Yaoming Cai 5 Jul 18, 2022
ADOP: Approximate Differentiable One-Pixel Point Rendering

ADOP: Approximate Differentiable One-Pixel Point Rendering Abstract: We present a novel point-based, differentiable neural rendering pipeline for scen

Darius Rückert 1.9k Jan 06, 2023
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

donglee 279 Dec 13, 2022
End-to-end Temporal Action Detection with Transformer. [Under review]

TadTR: End-to-end Temporal Action Detection with Transformer By Xiaolong Liu, Qimeng Wang, Yao Hu, Xu Tang, Song Bai, Xiang Bai. This repo holds the c

Xiaolong Liu 105 Dec 25, 2022
Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021

Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021 Abstract Recent works have made great success in semantic segmentation by explo

Hanzhe Hu 30 Dec 29, 2022
Research code for CVPR 2021 paper "End-to-End Human Pose and Mesh Reconstruction with Transformers"

MeshTransformer ✨ This is our research code of End-to-End Human Pose and Mesh Reconstruction with Transformers. MEsh TRansfOrmer is a simple yet effec

Microsoft 473 Dec 31, 2022