PyTorch code for our paper "Gated Multiple Feedback Network for Image Super-Resolution" (BMVC2019)

Related tags

Deep LearningGMFN
Overview

Gated Multiple Feedback Network for Image Super-Resolution

This repository contains the PyTorch implementation for the proposed GMFN [arXiv].

The framework of our proposed GMFN. The colored arrows among different time steps denote the multiple feedback connections. The high-level information carried by them helps low-level features become more representative.

Demo

Clone SRFBN as the backbone and satisfy its requirements.

Test

  1. Copy ./networks/gmfn_arch.py into SRFBN_CVPR19/networks/

  2. Download the pre-trained models from Google driver or Baidu Netdisk, unzip and place them into SRFBN_CVPR19/models.

  3. Copy ./options/test/ to SRFBN_CVPR19/options/test/.

  4. Run commands cd SRFBN_CVPR19 and one of followings for evaluation on Set5:

python test.py -opt options/test/test_GMFN_x2.json
python test.py -opt options/test/test_GMFN_x3.json
python test.py -opt options/test/test_GMFN_x4.json
  1. Finally, PSNR/SSIM values for Set5 are shown on your screen, you can find the reconstruction images in ./results.

To test GMFN on other standard SR benchmarks or your own images, please refer to the instruction in SRFBN.

Train

  1. Prepare the training set according to this (1-3).
  2. Modify ./options/train/train_GMFN.json by following the instructions in ./options/train/README.md.
  3. Run commands:
cd SRFBN_CVPR19
python train.py -opt options/train/train_GNFN.json
  1. You can monitor the training process in ./experiments.

  2. Finally, you can follow the test pipeline to evaluate the model trained by yourself.

Performance

Quantitative Results

Quantitative evaluation under scale factors x2, x3 and x4. The best performance is shown in bold and the second best performance is underlined.

More Qualitative Results (x4)

Acknowledgment

If you find our work useful in your research or publications, please consider citing:

@inproceedings{li2019gmfn,
    author = {Li, Qilei and Li, Zhen and Lu, Lu and Jeon, Gwanggil and Liu, Kai and Yang, Xiaomin},
    title = {Gated Multiple Feedback Network for Image Super-Resolution},
    booktitle = {The British Machine Vision Conference (BMVC)},
    year = {2019}
}

@inproceedings{li2019srfbn,
    author = {Li, Zhen and Yang, Jinglei and Liu, Zheng and Yang, Xiaomin and Jeon, Gwanggil and Wu, Wei},
    title = {Feedback Network for Image Super-Resolution},
    booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year= {2019}
}
You might also like...
Pytorch implementation of our paper under review β€” Lottery Jackpots Exist in Pre-trained Models

Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python = 3.7.4 Pytorch = 1.6.1 Torchvision = 0.4.1 Reproduce the Experiment

The repository offers the official implementation of our paper in PyTorch.

Cloth Interactive Transformer (CIT) Cloth Interactive Transformer for Virtual Try-On Bin Ren1, Hao Tang1, Fanyang Meng2, Runwei Ding3, Ling Shao4, Phi

PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation
PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimation

StructDepth PyTorch implementation of our ICCV2021 paper: StructDepth: Leveraging the structural regularities for self-supervised indoor depth estimat

Pytorch implementation for  our ICCV 2021 paper
Pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering".

TRAnsformer Routing Networks (TRAR) This is an official implementation for ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visu

This is the official pytorch implementation for our ICCV 2021 paper
This is the official pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering" on VQA Task

🌈 ERASOR (RA-L'21 with ICRA Option) Official page of "ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point C

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.
PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation for our NeurIPS 2021 Spotlight paper
PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

Long Short-Term Transformer for Online Action Detection Introduction This is a PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short

Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Comments
  • Approximately how many epoches will reach the results in the paper (4x SR result)

    Approximately how many epoches will reach the results in the paper (4x SR result)

    Hi, liqilei After I have run about 700 epoches, the reult on val set is 32.41(highest result). I want to know if my training process seems to be problematic? How long did you reach 32.47 of SRFBN when you were training? How long does it take to reach 32.70? Thank you.

    opened by Senwang98 7
  • train error size not match

    train error size not match

    CUDA_VISIBLE_DEVICES=0 python train.py -opt options/train/train_GMFN.json I use celeba dataset train

    ===> Training Epoch: [1/1000]... Learning Rate: 0.000200 Epoch: [1/1000]: 0%| | 0/251718 [00:00<?, ?it/s] Traceback (most recent call last): File "train.py", line 131, in main() File "train.py", line 69, in main iter_loss = solver.train_step() File "/exp_sr/SRFBN/solvers/SRSolver.py", line 104, in train_step loss_steps = [self.criterion_pix(sr, split_HR) for sr in outputs] File "/exp_sr/SRFBN/solvers/SRSolver.py", line 104, in loss_steps = [self.criterion_pix(sr, split_HR) for sr in outputs] File "/toolscnn/env_pyt0.4_py3.5_awsrn/lib/python3.5/site-packages/torch/nn/modules/module.py", line 477, in call result = self.forward(*input, **kwargs) File "/toolscnn/env_pyt0.4_py3.5_awsrn/lib/python3.5/site-packages/torch/nn/modules/loss.py", line 87, in forward return F.l1_loss(input, target, reduction=self.reduction) File "/toolscnn/env_pyt0.4_py3.5_awsrn/lib/python3.5/site-packages/torch/nn/functional.py", line 1702, in l1_loss input, target, reduction) File "/toolscnn/env_pyt0.4_py3.5_awsrn/lib/python3.5/site-packages/torch/nn/functional.py", line 1674, in _pointwise_loss return lambd_optimized(input, target, reduction) RuntimeError: input and target shapes do not match: input [16 x 3 x 192 x 192], target [16 x 3 x 48 x 48] at /pytorch/aten/src/THCUNN/generic/AbsCriterion.cu:12

    opened by yja1 3
  • Not an Issue

    Not an Issue

    Hey @Paper99,

    Thanks for sharing your code! I wonder if it is possible to help with visualizing featuer-maps as you did in your paper figure 4.

    Thanks

    opened by Auth0rM0rgan 1
  • My training result with scale = 2

    My training result with scale = 2

    Hi, After I have trained the DIV2k, I get the final result(use best_ckp.pth to test):

    set5:38.16/0.9610
    set14:33.91/0.9203
    urban100:32.81/0.9349
    B100:32.30/0.9011
    manga109:39.01/0.9776
    

    It seems much lower than that in your paper.

    opened by Senwang98 6
Owner
Qilei Li
Qilei Li
The implementation of CVPR2021 paper Temporal Query Networks for Fine-grained Video Understanding, by Chuhan Zhang, Ankush Gupta and Andrew Zisserman.

Temporal Query Networks for Fine-grained Video Understanding πŸ“‹ This repository contains the implementation of CVPR2021 paper Temporal_Query_Networks

55 Dec 21, 2022
Implementing DropPath/StochasticDepth in PyTorch

%load_ext memory_profiler Implementing Stochastic Depth/Drop Path In PyTorch DropPath is available on glasses my computer vision library! Introduction

Francesco Saverio Zuppichini 13 Jan 05, 2023
NP DRAW paper released code

NP-DRAW: A Non-Parametric Structured Latent Variable Model for Image Generation This repo contains the official implementation for the NP-DRAW paper.

ZENG Xiaohui 22 Mar 13, 2022
Gesture-controlled Video Game. Just swing your finger and play the game without touching your PC

Gesture Controlled Video Game Detailed Blog : https://www.analyticsvidhya.com/blog/2021/06/gesture-controlled-video-game/ Introduction This project is

Devbrat Anuragi 35 Jan 06, 2023
Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more"

The Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more" Arxiv preprint Louay Hazami   Β·   Rayhane Mama   Β·   Ragavan Thurairatn

Rayhane Mama 144 Dec 23, 2022
Official repository for Fourier model that can generate periodic signals

Conditional Generation of Periodic Signals with Fourier-Based Decoder Jiyoung Lee, Wonjae Kim, Daehoon Gwak, Edward Choi This repository provides offi

8 May 25, 2022
MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition

MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition Paper: MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition accepted fo

64 Dec 18, 2022
Unofficial pytorch implementation of the paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution"

DFSA Unofficial pytorch implementation of the ICCV 2021 paper "Dynamic High-Pass Filtering and Multi-Spectral Attention for Image Super-Resolution" (p

2 Nov 15, 2021
Template repository to build PyTorch projects from source on any version of PyTorch/CUDA/cuDNN.

The Ultimate PyTorch Source-Build Template Translations: ν•œκ΅­μ–΄ TL;DR PyTorch built from source can be x4 faster than a naΓ―ve PyTorch install. This repos

Joonhyung Lee/μ΄μ€€ν˜• 651 Dec 12, 2022
EfficientNetV2-with-TPU - Cifar-10 case study

EfficientNetV2-with-TPU EfficientNet EfficientNetV2 adalah jenis jaringan saraf convolutional yang memiliki kecepatan pelatihan lebih cepat dan efisie

Sultan syach 1 Dec 28, 2021
A cool little repl-based simulation written in Python

A cool little repl-based simulation written in Python planned to integrate machine-learning into itself to have AI battle to the death before your eye

Em 6 Sep 17, 2022
Official Implementation for the "An Empirical Investigation of 3D Anomaly Detection and Segmentation" paper.

An Empirical Investigation of 3D Anomaly Detection and Segmentation Project | Paper Official PyTorch Implementation for the "An Empirical Investigatio

Eliahu Horwitz 55 Dec 14, 2022
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
Rethinking of Pedestrian Attribute Recognition: A Reliable Evaluation under Zero-Shot Pedestrian Identity Setting

Pytorch Pedestrian Attribute Recognition: A strong PyTorch baseline of pedestrian attribute recognition and multi-label classification.

Jian 79 Dec 18, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

Introduction This is a Python package available on PyPI for NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pyto

Artit 'Art' Wangperawong 5 Sep 29, 2021
This repository is to support contributions for tools for the Project CodeNet dataset hosted in DAX

The goal of Project CodeNet is to provide the AI-for-Code research community with a large scale, diverse, and high quality curated dataset to drive innovation in AI techniques.

International Business Machines 1.2k Jan 04, 2023
Official implementation of the paper "Lightweight Deep CNN for Natural Image Matting via Similarity Preserving Knowledge Distillation"

Lightweight-Deep-CNN-for-Natural-Image-Matting-via-Similarity-Preserving-Knowledge-Distillation Introduction Accepted at IEEE Signal Processing Letter

DongGeun-Yoon 19 Jun 07, 2022
3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos

3D-CariGAN: An End-to-End Solution to 3D Caricature Generation from Normal Face Photos This repository contains the source code and dataset for the pa

54 Oct 09, 2022
Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection

fpn.pytorch Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection Introduction This project inherits the property of our pytorc

Jianwei Yang 912 Dec 21, 2022
Automatic Idiomatic Expression Detection

IDentifier of Idiomatic Expressions via Semantic Compatibility (DISC) An Idiomatic identifier that detects the presence and span of idiomatic expressi

5 Jun 09, 2022