Code for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling Using BERT Adapter"

Related tags

Deep LearningLEBERT
Overview

Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter

Code and checkpoints for the ACL2021 paper "Lexicon Enhanced Chinese Sequence Labelling Using BERT Adapter"

Arxiv link of the paper: https://arxiv.org/abs/2105.07148

Requirement

  • Python 3.7.0
  • Transformer 3.4.0
  • Numpy 1.18.5
  • Packaging 17.1
  • skicit-learn 0.23.2
  • torch 1.16.0+cu92
  • tqdm 4.50.2
  • multiprocess 0.70.10
  • tensorflow 2.3.1
  • tensorboardX 2.1
  • seqeval 1.2.1

Input Format

CoNLL format (prefer BIOES tag scheme), with each character its label for one line. Sentences are splited with a null line.

美   B-LOC  
国   E-LOC  
的   O  
华   B-PER  
莱   I-PER  
士   E-PER  

我   O  
跟   O  
他   O  
谈   O  
笑   O  
风   O  
生   O   

Chinese BERT,Chinese Word Embedding, and Checkpoints

Chinese BERT

Chinese BERT: https://cdn.huggingface.co/bert-base-chinese-pytorch_model.bin

Chinese word embedding:

Word Embedding: https://ai.tencent.com/ailab/nlp/en/data/Tencent_AILab_ChineseEmbedding.tar.gz

Checkpoints and Shells

Directory Structure of data

  • berts
    • bert
      • config.json
      • vocab.txt
      • pytorch_model.bin
  • dataset
    • NER
      • weibo
      • note4
      • msra
      • resume
    • POS
      • ctb5
      • ctb6
      • ud1
      • ud2
    • CWS
      • ctb6
      • msr
      • pku
  • vocab
    • tencent_vocab.txt, the vocab of pre-trained word embedding table.
  • embedding
    • word_embedding.txt
  • result
    • NER
      • weibo
      • note4
      • msra
      • resume
    • POS
      • ctb5
      • ctb6
      • ud1
      • ud2
    • CWS
      • ctb6
      • msr
      • pku
  • log

Run

  • 1.Convert .char.bmes file to .json file, python3 to_json.py

  • 2.run the shell, sh run_ner.sh

If you want to load my checkpoints, you need to make some revisions to your transformers.

My model is trained in distribution mode so it can not be directly loaded by single-GPU mode. You can follow the below steps to revise the transformers before load my checkpoints.

  • Enter the source code director of Transformer, cd source/transformers-master

  • Find the modeling_util.py, and positioned to about 995 lines

  • change the code as follows: image

  • Compile the revised source code and install. python3 setup.py install

Cite

@misc{liu2021lexicon,
      title={Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter}, 
      author={Wei Liu and Xiyan Fu and Yue Zhang and Wenming Xiao},
      year={2021},
      eprint={2105.07148},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
Owner
a hard-working boy!
Deep learning PyTorch library for time series forecasting, classification, and anomaly detection

Deep learning for time series forecasting Flow forecast is an open-source deep learning for time series forecasting framework. It provides all the lat

AIStream 1.2k Jan 04, 2023
PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning.

neural-combinatorial-rl-pytorch PyTorch implementation of Neural Combinatorial Optimization with Reinforcement Learning. I have implemented the basic

Patrick E. 454 Jan 06, 2023
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images

Learning Lightweight Low-Light Enhancement Network using Pseudo Well-Exposed Images This repository contains the implementation of the following paper

Seonggwan Ko 9 Jul 30, 2022
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022
structured-generative-modeling

This repository contains the implementation for the paper Information Theoretic StructuredGenerative Modeling, Specially thanks for the open-source co

0 Oct 11, 2021
Machine Learning in Asset Management (by @firmai)

Machine Learning in Asset Management If you like this type of content then visit ML Quant site below: https://www.ml-quant.com/ Part One Follow this l

Derek Snow 1.5k Jan 02, 2023
Self-Adaptable Point Processes with Nonparametric Time Decays

NPPDecay This is our implementation for the paper Self-Adaptable Point Processes with Nonparametric Time Decays, by Zhimeng Pan, Zheng Wang, Jeff M. P

zpan 2 Sep 24, 2022
The Deep Learning with Julia book, using Flux.jl.

Deep Learning with Julia DL with Julia is a book about how to do various deep learning tasks using the Julia programming language and specifically the

Logan Kilpatrick 67 Dec 25, 2022
A new video text spotting framework with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 67 Jan 03, 2023
Repository for training material for the 2022 SDSC HPC/CI User Training Course

hpc-training-2022 Repository for training material for the 2022 SDSC HPC/CI Training Series HPC/CI Training Series home https://www.sdsc.edu/event_ite

sdsc-hpc-training-org 21 Jul 27, 2022
This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametric Head Model (CVPR 2022)".

HeadNeRF: A Real-time NeRF-based Parametric Head Model This repository contains a pytorch implementation of "HeadNeRF: A Real-time NeRF-based Parametr

294 Jan 01, 2023
Codebase for the paper titled "Continual learning with local module selection"

This repository contains the codebase for the paper Continual Learning via Local Module Composition. Setting up the environemnt Create a new conda env

Oleksiy Ostapenko 20 Dec 10, 2022
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Federico Galatolo 172 Dec 22, 2022
Wikidated : An Evolving Knowledge Graph Dataset of Wikidata’s Revision History

Wikidated Wikidated 1.0 is a dataset of Wikidata’s full revision history, which encodes changes between Wikidata revisions as sets of deletions and ad

Lukas Schmelzeisen 11 Aug 16, 2022
Public repository of the 3DV 2021 paper "Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds"

Generative Zero-Shot Learning for Semantic Segmentation of 3D Point Clouds Björn Michele1), Alexandre Boulch1), Gilles Puy1), Maxime Bucher1) and Rena

valeo.ai 15 Dec 22, 2022
PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner [Li et al., 2020].

VGPL-Visual-Prior PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner (VGPL). Give

Toru 8 Dec 29, 2022
Code for: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification Prerequisite PyTorch = 1.2.0 Python3 torch

16 Dec 14, 2022
⚓ Eurybia monitor model drift over time and securize model deployment with data validation

View Demo · Documentation · Medium article 🔍 Overview Eurybia is a Python library which aims to help in : Detecting data drift and model drift Valida

MAIF 172 Dec 27, 2022
Project page for End-to-end Recovery of Human Shape and Pose

End-to-end Recovery of Human Shape and Pose Angjoo Kanazawa, Michael J. Black, David W. Jacobs, Jitendra Malik CVPR 2018 Project Page Requirements Pyt

1.4k Dec 29, 2022