Densely Connected Convolutional Networks, In CVPR 2017 (Best Paper Award).

Overview

Densely Connected Convolutional Networks (DenseNets)

This repository contains the code for DenseNet introduced in the following paper

Densely Connected Convolutional Networks (CVPR 2017, Best Paper Award)

Gao Huang*, Zhuang Liu*, Laurens van der Maaten and Kilian Weinberger (* Authors contributed equally).

and its journal version

Convolutional Networks with Dense Connectivity (TPAMI 2019)

Gao Huang, Zhuang Liu, Geoff Pleiss, Laurens van der Maaten and Kilian Weinberger.

Now with memory-efficient implementation! Please check the technical report and code for more infomation.

The code is built on fb.resnet.torch.

Citation

If you find DenseNet useful in your research, please consider citing:

@article{huang2019convolutional,
 title={Convolutional Networks with Dense Connectivity},
 author={Huang, Gao and Liu, Zhuang and Pleiss, Geoff and Van Der Maaten, Laurens and Weinberger, Kilian},
 journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
 year={2019}
 }
 
@inproceedings{huang2017densely,
  title={Densely Connected Convolutional Networks},
  author={Huang, Gao and Liu, Zhuang and van der Maaten, Laurens and Weinberger, Kilian Q },
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2017}
}

Other Implementations

Our [Caffe], Our memory-efficient [Caffe], Our memory-efficient [PyTorch], [PyTorch] by Andreas Veit, [PyTorch] by Brandon Amos, [PyTorch] by Federico Baldassarre, [MXNet] by Nicatio, [MXNet] by Xiong Lin, [MXNet] by miraclewkf, [Tensorflow] by Yixuan Li, [Tensorflow] by Laurent Mazare, [Tensorflow] by Illarion Khlestov, [Lasagne] by Jan Schlüter, [Keras] by tdeboissiere,
[Keras] by Roberto de Moura Estevão Filho, [Keras] by Somshubra Majumdar, [Chainer] by Toshinori Hanya, [Chainer] by Yasunori Kudo, [Torch 3D-DenseNet] by Barry Kui, [Keras] by Christopher Masch, [Tensorflow2] by Gaston Rios and Ulises Jeremias Cornejo Fandos.

Note that we only listed some early implementations here. If you would like to add yours, please submit a pull request.

Some Following up Projects

  1. Multi-Scale Dense Convolutional Networks for Efficient Prediction
  2. DSOD: Learning Deeply Supervised Object Detectors from Scratch
  3. CondenseNet: An Efficient DenseNet using Learned Group Convolutions
  4. Fully Convolutional DenseNets for Semantic Segmentation
  5. Pelee: A Real-Time Object Detection System on Mobile Devices

Contents

  1. Introduction
  2. Usage
  3. Results on CIFAR
  4. Results on ImageNet and Pretrained Models
  5. Updates

Introduction

DenseNet is a network architecture where each layer is directly connected to every other layer in a feed-forward fashion (within each dense block). For each layer, the feature maps of all preceding layers are treated as separate inputs whereas its own feature maps are passed on as inputs to all subsequent layers. This connectivity pattern yields state-of-the-art accuracies on CIFAR10/100 (with or without data augmentation) and SVHN. On the large scale ILSVRC 2012 (ImageNet) dataset, DenseNet achieves a similar accuracy as ResNet, but using less than half the amount of parameters and roughly half the number of FLOPs.

Figure 1: A dense block with 5 layers and growth rate 4.

densenet Figure 2: A deep DenseNet with three dense blocks.

Usage

  1. Install Torch and required dependencies like cuDNN. See the instructions here for a step-by-step guide.
  2. Clone this repo: git clone https://github.com/liuzhuang13/DenseNet.git

As an example, the following command trains a DenseNet-BC with depth L=100 and growth rate k=12 on CIFAR-10:

th main.lua -netType densenet -dataset cifar10 -batchSize 64 -nEpochs 300 -depth 100 -growthRate 12

As another example, the following command trains a DenseNet-BC with depth L=121 and growth rate k=32 on ImageNet:

th main.lua -netType densenet -dataset imagenet -data [dataFolder] -batchSize 256 -nEpochs 90 -depth 121 -growthRate 32 -nGPU 4 -nThreads 16 -optMemory 3

Please refer to fb.resnet.torch for data preparation.

DenseNet and DenseNet-BC

By default, the code runs with the DenseNet-BC architecture, which has 1x1 convolutional bottleneck layers, and compresses the number of channels at each transition layer by 0.5. To run with the original DenseNet, simply use the options -bottleneck false and -reduction 1

Memory efficient implementation (newly added feature on June 6, 2017)

There is an option -optMemory which is very useful for reducing GPU memory footprint when training a DenseNet. By default, the value is set to 2, which activates the shareGradInput function (with small modifications from here). There are two extreme memory efficient modes (-optMemory 3 or -optMemory 4) which use a customized densely connected layer. With -optMemory 4, the largest 190-layer DenseNet-BC on CIFAR can be trained on a single NVIDIA TitanX GPU (uses 8.3G of 12G) instead of fully using four GPUs with the standard (recursive concatenation) implementation .

More details about the memory efficient implementation are discussed here.

Results on CIFAR

The table below shows the results of DenseNets on CIFAR datasets. The "+" mark at the end denotes for standard data augmentation (random crop after zero-padding, and horizontal flip). For a DenseNet model, L denotes its depth and k denotes its growth rate. On CIFAR-10 and CIFAR-100 without data augmentation, a Dropout layer with drop rate 0.2 is introduced after each convolutional layer except the very first one.

Model Parameters CIFAR-10 CIFAR-10+ CIFAR-100 CIFAR-100+
DenseNet (L=40, k=12) 1.0M 7.00 5.24 27.55 24.42
DenseNet (L=100, k=12) 7.0M 5.77 4.10 23.79 20.20
DenseNet (L=100, k=24) 27.2M 5.83 3.74 23.42 19.25
DenseNet-BC (L=100, k=12) 0.8M 5.92 4.51 24.15 22.27
DenseNet-BC (L=250, k=24) 15.3M 5.19 3.62 19.64 17.60
DenseNet-BC (L=190, k=40) 25.6M - 3.46 - 17.18

Results on ImageNet and Pretrained Models

Torch

Models in the original paper

The Torch models are trained under the same setting as in fb.resnet.torch. The error rates shown are 224x224 1-crop test errors.

Network Top-1 error Torch Model
DenseNet-121 (k=32) 25.0 Download (64.5MB)
DenseNet-169 (k=32) 23.6 Download (114.4MB)
DenseNet-201 (k=32) 22.5 Download (161.8MB)
DenseNet-161 (k=48) 22.2 Download (230.8MB)

Models in the tech report

More accurate models trained with the memory efficient implementation in the technical report.

Network Top-1 error Torch Model
DenseNet-264 (k=32) 22.1 Download (256MB)
DenseNet-232 (k=48) 21.2 Download (426MB)
DenseNet-cosine-264 (k=32) 21.6 Download (256MB)
DenseNet-cosine-264 (k=48) 20.4 Download (557MB)

Caffe

https://github.com/shicai/DenseNet-Caffe.

PyTorch

PyTorch documentation on models. We would like to thank @gpleiss for this nice work in PyTorch.

Keras, Tensorflow and Theano

https://github.com/flyyufelix/DenseNet-Keras.

MXNet

https://github.com/miraclewkf/DenseNet.

Wide-DenseNet for better Time/Accuracy and Memory/Accuracy Tradeoff

If you use DenseNet as a model in your learning task, to reduce the memory and time consumption, we recommend use a wide and shallow DenseNet, following the strategy of wide residual networks. To obtain a wide DenseNet we set the depth to be smaller (e.g., L=40) and the growthRate to be larger (e.g., k=48).

We test a set of Wide-DenseNet-BCs and compared the memory and time with the DenseNet-BC (L=100, k=12) shown above. We obtained the statistics using a single TITAN X card, with batch size 64, and without any memory optimization.

Model Parameters CIFAR-10+ CIFAR-100+ Time per Iteration Memory
DenseNet-BC (L=100, k=12) 0.8M 4.51 22.27 0.156s 5452MB
Wide-DenseNet-BC (L=40, k=36) 1.5M 4.58 22.30 0.130s 4008MB
Wide-DenseNet-BC (L=40, k=48) 2.7M 3.99 20.29 0.165s 5245MB
Wide-DenseNet-BC (L=40, k=60) 4.3M 4.01 19.99 0.223s 6508MB

Obersevations:

  1. Wide-DenseNet-BC (L=40, k=36) uses less memory/time while achieves about the same accuracy as DenseNet-BC (L=100, k=12).
  2. Wide-DenseNet-BC (L=40, k=48) uses about the same memory/time as DenseNet-BC (L=100, k=12), while is much more accurate.

Thus, for practical use, we suggest picking one model from those Wide-DenseNet-BCs.

Updates

12/10/2019:

  1. Journal version (accepted by IEEE TPAMI) released.

08/23/2017:

  1. Add supporting code, so one can simply git clone and run.

06/06/2017:

  1. Support ultra memory efficient training of DenseNet with customized densely connected layer.

  2. Support memory efficient training of DenseNet with standard densely connected layer (recursive concatenation) by fixing the shareGradInput function.

05/17/2017:

  1. Add Wide-DenseNet.
  2. Add keras, tf, theano link for pretrained models.

04/20/2017:

  1. Add usage of models in PyTorch.

03/29/2017:

  1. Add the code for imagenet training.

12/03/2016:

  1. Add Imagenet results and pretrained models.
  2. Add DenseNet-BC structures.

Contact

liuzhuangthu at gmail.com
gaohuang at tsinghua.edu.cn
Any discussions, suggestions and questions are welcome!

Owner
Zhuang Liu
Zhuang Liu
A self-supervised 3D representation learning framework named viewpoint bottleneck.

Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck Paper Created by Liyi Luo, Beiwen Tian, Hao Zhao and Guyue Zhou from Institute for AI In

63 Aug 11, 2022
A Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Training Data》

RangeLoss Pytorch This is a Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Trai

Youzhi Gu 7 Nov 27, 2021
PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

PPLNN is a Primitive Library for Neural Network is a high-performance deep-learning inference engine for efficient AI inferencing

943 Jan 07, 2023
git《Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser》(2021) GitHub: [fig5]

Pseudo-ISP: Learning Pseudo In-camera Signal Processing Pipeline from A Color Image Denoiser Abstract The success of deep denoisers on real-world colo

Yue Cao 51 Nov 22, 2022
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Shipeng Wang 34 Dec 21, 2022
Sky Computing: Accelerating Geo-distributed Computing in Federated Learning

Sky Computing Introduction Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to

HPC-AI Tech 72 Dec 27, 2022
Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022

PGNet Pyramid Grafting Network for One-Stage High Resolution Saliency Detection. CVPR 2022, CVPR 2022 (arXiv 2204.05041) Abstract Recent salient objec

CVTEAM 109 Dec 05, 2022
Using pretrained GROVER to extract the atomic fingerprints from molecule

Extracting atomic fingerprints from molecules using pretrained Graph Neural Network models (GROVER).

Xuan Vu Nguyen 1 Jan 28, 2022
PyTorch implementation for Score-Based Generative Modeling through Stochastic Differential Equations (ICLR 2021, Oral)

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains a PyTorch implementation for the paper Score-Based Genera

Yang Song 757 Jan 04, 2023
Image-Scaling Attacks and Defenses

Image-Scaling Attacks & Defenses This repository belongs to our publication: Erwin Quiring, David Klein, Daniel Arp, Martin Johns and Konrad Rieck. Ad

Erwin Quiring 163 Nov 21, 2022
Sionna: An Open-Source Library for Next-Generation Physical Layer Research

Sionna: An Open-Source Library for Next-Generation Physical Layer Research Sionna™ is an open-source Python library for link-level simulations of digi

NVIDIA Research Projects 313 Dec 22, 2022
Multi-resolution SeqMatch based long-term Place Recognition

MRS-SLAM for long-term place recognition In this work, we imply an multi-resolution sambling based visual place recognition method. This work is based

METASLAM 6 Dec 06, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
Tools for manipulating UVs in the Blender viewport.

UV Tool Suite for Blender A set of tools to make editing UVs easier in Blender. These tools can be accessed wither through the Kitfox - UV panel on th

35 Oct 29, 2022
NovelD: A Simple yet Effective Exploration Criterion

NovelD: A Simple yet Effective Exploration Criterion Intro This is an implementation of the method proposed in NovelD: A Simple yet Effective Explorat

29 Dec 05, 2022
face2comics by Sxela (Alex Spirin) - face2comics datasets

This is a paired face to comics dataset, which can be used to train pix2pix or similar networks.

Alex 164 Nov 13, 2022
Node for thenewboston digital currency network.

Project setup For project setup see INSTALL.rst Community Join the community to stay updated on the most recent developments, project roadmaps, and ra

thenewboston 27 Jul 08, 2022
HyperaPy: An automatic hyperparameter optimization framework ⚡🚀

hyperpy HyperPy: An automatic hyperparameter optimization framework Description HyperPy: Library for automatic hyperparameter optimization. Build on t

Sergio Mora 7 Sep 06, 2022
Chinese Mandarin tts text-to-speech 中文 (普通话) 语音 合成 , by fastspeech 2 , implemented in pytorch, using waveglow as vocoder,

Chinese mandarin text to speech based on Fastspeech2 and Unet This is a modification and adpation of fastspeech2 to mandrin(普通话). Many modifications t

291 Jan 02, 2023