Implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hashing by Maximizing Bit Entropy

Overview

Deep Unsupervised Image Hashing by Maximizing Bit Entropy

This is the PyTorch implementation of accepted AAAI 2021 paper: Deep Unsupervised Image Hashing by Maximizing Bit Entropy

Proposed Bi-half layer

A simple, parameter-free, bi-half coding layer to maximize hash channel capacity

Datasets and Architectures on different settings

Experiments on 5 image datasets: Flickr25k, Nus-wide, Cifar-10, Mscoco, Mnist, and 2 video datasets: Ucf-101 and Hmdb-51. According to different settings, we divided them into: i) Train an AutoEncoder on Mnist; ii) Image Hashing on Flickr25k, Nus-wide, Cifar-10, Mscoco using Pre-trained Vgg; iii) Video Hashing on Ucf-101 and Hmdb-51 using Pre-trained 3D models.

Glance

3 settings ── AutoEncoder ── ── ── ── ImageHashing ── ── ── ── VideoHashing      
               ├── Sign.py             ├── Cifar10_I.py          └── main.py
               ├── SignReg.py          ├── Cifar10_II.py
               └── BiHalf.py           ├── Flickr25k.py
    	     			       └── Mscoco.py

Datasets download

# Datasets Download
1 Flick25k Link
2 Mscoco Link
3 Nuswide Link
4 Cifar10 Link
5 Mnist Link
6 Ucf101 Link
7 Hmdb51 Link

For video datasets, we converted them from avi to jpg files. The original avi videos can be download: Ucf101 and Hmdb51.

Implementation Details for Video Setup

For the video datasets ucf101 and hmdb51, to generate a training sample, we first select a video frame by uniform sampling, and then generate a 16-frame clip around the frame. If the selected position has less than 16 frames before the video ends, then we repeat the procedure until it fits. We spatially resize the cropped sample to 112 x 112 pixels, resulting in one training sample with size of 3 channels x 16 frames x 112 pixels x 112 pixels. In the retrieval, we adopt sliding window to generate clips as input, i.e, each video is split into non-overlapping 16-frame clips. Each video has an average 92 non-overlapped clips. Take the ucf101 for example, we obtain a query set of 3,783 videos containing 348,047 non-overlapped clips, and the retrieval set of 9,537 videos containing 891,961 clips. We then input the non-overlapped clips to extract binary descriptors for hashing. For more details, please see the paper.

Pretrained model

You can download kinetics pre-trained 3D models: ResNet-34 and ResNet-101 here.


3D Visualization

The continuous feature visualization on an AutoEncoder using Mnist. We compare 3 different models: sign layer, sign+reg and our bi-half layer.

Sign Layer Sign + Reg Bi-half Layer

Citation

If you find the code in this repository useful for your research consider citing it.

@article{liAAAI2021,
  title={Deep Unsupervised Image Hashing by Maximizing Bit Entropy},
  author={Li, Yunqiang and van Gemert, Jan},
  journal={AAAI},
  year={2021}
}

Contact

If you have any problem about our code, feel free to contact

Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Beijing ColorfulClouds Technology Co.,Ltd. 16 Aug 07, 2022
Matlab Python Heuristic Battery Opt - SMOP conversion and manual conversion

SMOP is Small Matlab and Octave to Python compiler. SMOP translates matlab to py

Tom Xu 1 Jan 12, 2022
Multistream CNN for Robust Acoustic Modeling

Multistream Convolutional Neural Network (CNN) A multistream CNN is a novel neural network architecture for robust acoustic modeling in speech recogni

ASAPP Research 37 Sep 21, 2022
PyTorch implementation of Munchausen Reinforcement Learning based on DQN and SAC. Handles discrete and continuous action spaces

Exploring Munchausen Reinforcement Learning This is the project repository of my team in the "Advanced Deep Learning for Robotics" course at TUM. Our

Mohamed Amine Ketata 10 Mar 10, 2022
unofficial pytorch implementation of RefineGAN

RefineGAN unofficial pytorch implementation of RefineGAN (https://arxiv.org/abs/1709.00753) for CSMRI reconstruction, the official code using tensorpa

xinby17 5 Jul 21, 2022
Code release for paper: The Boombox: Visual Reconstruction from Acoustic Vibrations

The Boombox: Visual Reconstruction from Acoustic Vibrations Boyuan Chen, Mia Chiquier, Hod Lipson, Carl Vondrick Columbia University Project Website |

Boyuan Chen 12 Nov 30, 2022
Bunch of different tools which helps visualizing and annotating images for semantic/instance segmentation tasks

Data Framework for Semantic/Instance Segmentation Bunch of different tools which helps visualizing, transforming and annotating images for semantic/in

Bruno Fernandes Carvalho 5 Dec 21, 2022
Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration

Speckle-free Holography with Partially Coherent Light Sources and Camera-in-the-loop Calibration Project Page | Paper Yifan Peng*, Suyeon Choi*, Jongh

Stanford Computational Imaging Lab 19 Dec 11, 2022
Learning with Subset Stacking

Learning with Subset Stacking (LESS) LESS is a new supervised learning algorithm that is based on training many local estimators on subsets of a given

S. Ilker Birbil 19 Oct 04, 2022
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration (NeurIPS 2021) PyTorch implementation of the paper: CoFiNet: Reli

76 Jan 03, 2023
A tensorflow implementation of GCN-LPA

GCN-LPA This repository is the implementation of GCN-LPA (arXiv): Unifying Graph Convolutional Neural Networks and Label Propagation Hongwei Wang, Jur

Hongwei Wang 83 Nov 28, 2022
Irrigation controller for Home Assistant

Irrigation Unlimited This integration is for irrigation systems large and small. It can offer some complex arrangements without large and messy script

Robert Cook 176 Jan 02, 2023
Pytorch code for semantic segmentation using ERFNet

ERFNet (PyTorch version) This code is a toolbox that uses PyTorch for training and evaluating the ERFNet architecture for semantic segmentation. For t

Edu 394 Jan 01, 2023
Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

26 Dec 07, 2022
This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports"

Introduction: X-Ray Report Generation This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports". O

no name 36 Dec 16, 2022
PyTorch implementation of Weak-shot Fine-grained Classification via Similarity Transfer

SimTrans-Weak-Shot-Classification This repository contains the official PyTorch implementation of the following paper: Weak-shot Fine-grained Classifi

BCMI 60 Dec 02, 2022
Dynamic Graph Event Detection

DyGED Dynamic Graph Event Detection Get Started pip install -r requirements.txt TODO Paper link to arxiv, and how to cite. Twitter Weather dataset tra

Mert Koşan 3 May 09, 2022
Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification tasks

Uniformer - Pytorch Implementation of Uniformer, a simple attention and 3d convolutional net that achieved SOTA in a number of video classification ta

Phil Wang 90 Nov 24, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
SCAAML is a deep learning framwork dedicated to side-channel attacks run on top of TensorFlow 2.x.

SCAAML (Side Channel Attacks Assisted with Machine Learning) is a deep learning framwork dedicated to side-channel attacks. It is written in python and run on top of TensorFlow 2.x.

Google 69 Dec 21, 2022