The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization".

Overview

Kernelized-HRM

Jiashuo Liu, Zheyuan Hu

The code for our NeurIPS 2021 paper "Kernelized Heterogeneous Risk Minimization"[1]. This repo contains the codes for our Classification with Spurious Correlation and Regression with Selection Bias simulated experiments, including the data generation process, the whole Kernelized-HRM algorithm and the testing process.

Details

There are two files, named KernelHRM_sim1.py and KernelHRM_sim2.py, which contains the code for the classification simulation experiment and the regression simulation experiment, respectively. The details of codes are:

  • generate_data_list: generate data according to the given parameters args.r_list.

  • generate_test_data_list: generate the test data for Selection Bias experiment, where the args.r_list is pre-defined to [-2.9,-2.7,...,-1.9].

  • main_KernelHRM: the whole framework for our Kernelized-HRM algorithm.

Hypermeters

There are many hyper-parameters to be tuned for the whole framework, which are different among different tasks and require users to carefully tune. Note that although we provide the hyper-parameters for the simulated experiments, it is possible that the results are not exactly the same as ours, which may due to the randomness or something else.

Generally, the following hyper-parameters need carefully tuned:

  • k: controls the dimension of reduced neural tangent features
  • whole_epoch: controls the overall number of iterations between the frontend and the backend
  • epochs: controls the number of epochs of optimizing the invariant learning module in each iteration
  • IRM_lam: controls the strength of the regularizer for the invariant learning
  • lr: learning rate
  • cluster_num: controls the number of clusters

Further, for the experimental settings, the following parameters need to be specified:

  • r_list: controls the strength of spurious correlations
  • scramble: similar to IRM[2], whether to mix the raw features
  • num_list: controls the number of data points from each environment

As for the optimal hyper-parameters for our simulation experiments, we put them into the reproduce.sh file.

Others

Similar to HRM[3], we view the proposed Kernelized-HRM as a framework, which converts the non-linear and complicated data into linear and raw feature data by neural tangent kernel and includes the clustering module and the invariant prediction module. In practice, one can replace each model to anything they want with the same effect.

Though I hate to mention it, our method has the following shortcomings:

  • Just like the original HRM[3], the convergence of the frontend module cannot be guaranteed, and we notice that there may be some cases the next iteration does not improve the current results or even hurts.
  • Hyper-parameters for different tasks may be quite different and need to be tuned carefully.
  • Whether this algorithm can be extended to more complicated image data, such as PACS, NICO et al. remains to be seen.(Maybe later we will have a try?)

Reference

[1] Jiasuho Liu, Zheyuan Hu, Peng Cui, Bo Li, Zheyan Shen. Kernelized Heterogeneous Risk Minimization. In NeurIPS 2021.

[2] Arjovsky M, Bottou L, Gulrajani I, et al. Invariant risk minimization.

[3] Jiashuo Liu, Zheyuan Hu, Peng Cui, Bo Li, Zheyan Shen. Heterogeneous Risk Minimziation. In ICML 2021.

Owner
Liu Jiashuo
THU-TrustAI(THU-TAI) Group
Liu Jiashuo
Implementation of Shape Generation and Completion Through Point-Voxel Diffusion

Shape Generation and Completion Through Point-Voxel Diffusion Project | Paper Implementation of Shape Generation and Completion Through Point-Voxel Di

Linqi Zhou 103 Dec 29, 2022
The official implementation of the CVPR2021 paper: Decoupled Dynamic Filter Networks

Decoupled Dynamic Filter Networks This repo is the official implementation of CVPR2021 paper: "Decoupled Dynamic Filter Networks". Introduction DDF is

F.S.Fire 180 Dec 30, 2022
🕵 Artificial Intelligence for social control of public administration

Non-tech crash course into Operação Serenata de Amor Tech crash course into Operação Serenata de Amor Contributing with code and tech skills Supportin

Open Knowledge Brasil - Rede pelo Conhecimento Livre 4.4k Dec 31, 2022
Coded illumination for improved lensless imaging

CodedCam Coded Illumination for Improved Lensless Imaging Paper | Supplementary results | Data and Code are available. Coded illumination for improved

Computational Sensing and Information Processing Lab 1 Nov 29, 2021
This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems

Stability Audit This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems, Humantic

Data, Responsibly 4 Oct 27, 2022
Implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT : Cross-Attention Multi-Scale Vision Transformer for Image Classification This is an unofficial PyTorch implementation of CrossViT: Cross-Att

Rishikesh (ऋषिकेश) 103 Nov 25, 2022
Multiple custom object count and detection using YOLOv3-Tiny method

Electronic-Component-YOLOv3 Introduce This project created to detect, count, and recognize multiple custom object using YOLOv3-Tiny method. The target

Derwin Mahardika 2 Nov 14, 2022
MINERVA: An out-of-the-box GUI tool for offline deep reinforcement learning

MINERVA is an out-of-the-box GUI tool for offline deep reinforcement learning, designed for everyone including non-programmers to do reinforcement learning as a tool.

Takuma Seno 80 Nov 06, 2022
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Real-ESRGAN Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data Ported from https://github.com/xinntao/Real-ESRGAN Depend

Holy Wu 44 Dec 27, 2022
Code for "Typilus: Neural Type Hints" PLDI 2020

Typilus A deep learning algorithm for predicting types in Python. Please find a preprint here. This repository contains its implementation (src/) and

47 Nov 08, 2022
PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data.

Anti-Backdoor Learning PyTorch Code for NeurIPS 2021 paper Anti-Backdoor Learning: Training Clean Models on Poisoned Data. The Anti-Backdoor Learning

Yige-Li 51 Dec 07, 2022
The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction".

LEAR The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction". See below for an overview of

杨攀 93 Jan 07, 2023
[NeurIPS'21] Projected GANs Converge Faster

[Project] [PDF] [Supplementary] [Talk] This repository contains the code for our NeurIPS 2021 paper "Projected GANs Converge Faster" by Axel Sauer, Ka

798 Jan 04, 2023
Active window border replacement for window managers.

xborder Active window border replacement for window managers. Usage git clone https://github.com/deter0/xborder cd xborder chmod +x xborders ./xborder

deter 250 Dec 30, 2022
Tacotron 2 - PyTorch implementation with faster-than-realtime inference

Tacotron 2 (without wavenet) PyTorch implementation of Natural TTS Synthesis By Conditioning Wavenet On Mel Spectrogram Predictions. This implementati

NVIDIA Corporation 4.1k Jan 03, 2023
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
This project helps to colorize grayscale images using multiple exemplars.

Multiple Exemplar-based Deep Colorization (Pytorch Implementation) Pretrained Model [Jitendra Chautharia](IIT Jodhpur)1,3, Prerequisites Python 3.6+ N

jitendra chautharia 3 Aug 05, 2022
Visual odometry package based on hardware-accelerated NVIDIA Elbrus library with world class quality and performance.

Isaac ROS Visual Odometry This repository provides a ROS2 package that estimates stereo visual inertial odometry using the Isaac Elbrus GPU-accelerate

NVIDIA Isaac ROS 343 Jan 03, 2023
Self-labelling via simultaneous clustering and representation learning. (ICLR 2020)

Self-labelling via simultaneous clustering and representation learning 🆗 🆗 🎉 NEW models (20th August 2020): Added standard SeLa pretrained torchvis

Yuki M. Asano 469 Jan 02, 2023
[CVPR'21] Multi-Modal Fusion Transformer for End-to-End Autonomous Driving

TransFuser This repository contains the code for the CVPR 2021 paper Multi-Modal Fusion Transformer for End-to-End Autonomous Driving. If you find our

695 Jan 05, 2023