Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]

Overview

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021]

This is the official pytorch implementation of BCNet built on the open-source detectron2.

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers
Lei Ke, Yu-Wing Tai, Chi-Keung Tang
CVPR 2021

  • Two-stage instance segmentation with state-of-the-art performance.
  • Image formation as composition of two overlapping layers.
  • Bilayer decoupling for the occluder and occludee.
  • Efficacy on both the FCOS and Faster R-CNN detectors.

Under construction. Our code and pretrained model will be fully released in two months.

Visualization of Occluded Objects

Qualitative instance segmentation results of our BCNet, using ResNet-101-FPN and Faster R-CNN detector. The bottom row visualizes squared heatmap of contour and mask predictions by the two GCN layers for the occluder and occludee in the same ROI region specified by the red bounding box, which also makes the final segmentation result of BCNet more explainable than previous methods.

Qualitative instance segmentation results of our BCNet, using ResNet-101-FPN and FCOS detector.

Results on COCO test-dev

(Check Table 8 of the paper for full results, all methods are trained on COCO train2017)

Detector Backbone Method mAP(mask)
Faster R-CNN ResNet-50 FPN Mask R-CNN 34.2
Faster R-CNN ResNet-50 FPN MS R-CNN 35.6
Faster R-CNN ResNet-50 FPN PointRend 36.3
Faster R-CNN ResNet-50 FPN PANet 36.6
Faster R-CNN ResNet-50 FPN BCNet 38.4
Faster R-CNN ResNet-101 FPN Mask R-CNN 36.1
Faster R-CNN ResNet-101 FPN BMask R-CNN 37.7
Faster R-CNN ResNet-101 FPN MS R-CNN 38.3
Faster R-CNN ResNet-101 FPN BCNet 39.8, [Pretrained Model]
FCOS ResNet-101 FPN SipMask 37.8
FCOS ResNet-101 FPN BlendMask 38.4
FCOS ResNet-101 FPN CenterMask 38.3
FCOS ResNet-101 FPN BCNet 39.6, [Pretrained Model]

Introduction

Segmenting highly-overlapping objects is challenging, because typically no distinction is made between real object contours and occlusion boundaries. Unlike previous two-stage instance segmentation methods, BCNet models image formation as composition of two overlapping layers, where the top GCN layer detects the occluding objects (occluder) and the bottom GCN layer infers partially occluded instance (occludee). The explicit modeling of occlusion relationship with bilayer structure naturally decouples the boundaries of both the occluding and occluded instances, and considers the interaction between them during mask regression. We validate the efficacy of bilayer decoupling on both one-stage and two-stage object detectors with different backbones and network layer choices. The network of BCNet is as follows:

Step-by-step Installation

conda create -n bcnet python=3.7 -y
source activate bcnet
 
conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1 -c pytorch
 
# FCOS and coco api and visualization dependencies
pip install ninja yacs cython matplotlib tqdm
pip install opencv-python==4.4.0.40
 
export INSTALL_DIR=$PWD
 
# install pycocotools. Please make sure you have installed cython.
cd $INSTALL_DIR
git clone https://github.com/cocodataset/cocoapi.git
cd cocoapi/PythonAPI
python setup.py build_ext install
 
# install BCNet
cd $INSTALL_DIR
git clone https://github.com/lkeab/BCNet.git
cd BCNet/
python3 setup.py build develop
 
unset INSTALL_DIR

Dataset Preparation

Prepare for coco2017 dataset following this instruction. And use our converted mask annotations to replace original annotation file for bilayer decoupling training.

  mkdir -p datasets/coco
  ln -s /path_to_coco_dataset/annotations datasets/coco/annotations
  ln -s /path_to_coco_dataset/train2017 datasets/coco/train2017
  ln -s /path_to_coco_dataset/test2017 datasets/coco/test2017
  ln -s /path_to_coco_dataset/val2017 datasets/coco/val2017

Multi-GPU Training and evaluation on Validation set

bash all.sh

Or

CUDA_VISIBLE_DEVICES=0,1 python3 tools/train_net.py --num-gpus 2 \
	--config-file configs/fcos/fcos_imprv_R_50_FPN_1x.yaml 2>&1 | tee log/train_log.txt

Pretrained Models

TBD

  mkdir pretrained_models
  #And put the downloaded pretrained models in this directory.

Testing on Test-dev

TBD

bash eval.sh

Citations

If you find BCNet useful in your research, please star this repository and consider citing:

@inproceedings{ke2021bcnet,
    author = {Ke, Lei and Tai, Yu-Wing and Tang, Chi-Keung},
    title = {Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers},
    booktitle = {CVPR},
    year = {2021},
}   

License

BCNet is released under the MIT license. See LICENSE for additional details. Thanks to the Third Party Libs detectron2

Owner
Lei Ke
PhD student in Computer Vision, HKUST
Lei Ke
Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019)

Adaptive Pyramid Context Network for Semantic Segmentation (APCNet CVPR'2019) Introduction Official implementation of Adaptive Pyramid Context Network

21 Nov 09, 2022
This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR)

CEDR This repository is for Contrastive Embedding Distribution Refinement and Entropy-Aware Attention Network (CEDR) introduced in the following paper

phoenix 3 Feb 27, 2022
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
A Marvelous ChatBot implement using PyTorch.

PyTorch Marvelous ChatBot [Update] it's 2019 now, previously model can not catch up state-of-art now. So we just move towards the future a transformer

JinTian 223 Oct 18, 2022
KwaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%)

KuaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%) KuaiRec is a real-world dataset collected from the recommendation log

Chongming GAO (高崇铭) 70 Dec 28, 2022
ML-based medical imaging using Azure

Disclaimer This code is provided for research and development use only. This code is not intended for use in clinical decision-making or for any other

Microsoft Azure 68 Dec 23, 2022
code for "Feature Importance-aware Transferable Adversarial Attacks"

Feature Importance-aware Attack(FIA) This repository contains the code for the paper: Feature Importance-aware Transferable Adversarial Attacks (ICCV

Hengchang Guo 44 Nov 24, 2022
[TIP2020] Adaptive Graph Representation Learning for Video Person Re-identification

Introduction This is the PyTorch implementation for Adaptive Graph Representation Learning for Video Person Re-identification. Get started git clone h

WuYiming 41 Dec 12, 2022
Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data

LiDAR-MOS: Moving Object Segmentation in 3D LiDAR Data This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learn

Photogrammetry & Robotics Bonn 394 Dec 29, 2022
This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Models used for prediction Diabetes and further the basic theory and working of Gold nanoparticles.

GoldNanoparticles This GitHub repo consists of Code and Some results of project- Diabetes Treatment using Gold nanoparticles. These Consist of ML Mode

1 Jan 30, 2022
NeWT: Natural World Tasks

NeWT: Natural World Tasks This repository contains resources for working with the NeWT dataset. ❗ At this time the binary tasks are not publicly avail

Visipedia 26 Oct 18, 2022
Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Finetuner allows one to tune the weights of any deep neural network for better embeddings on search tasks

Jina AI 794 Dec 31, 2022
LSTM Neural Networks for Spectroscopic Studies of Type Ia Supernovae

Package Description The difficulties in acquiring spectroscopic data have been a major challenge for supernova surveys. snlstm is developed to provide

7 Oct 11, 2022
Code for "Diversity can be Transferred: Output Diversification for White- and Black-box Attacks"

Output Diversified Sampling (ODS) This is the github repository for the NeurIPS 2020 paper "Diversity can be Transferred: Output Diversification for W

50 Dec 11, 2022
Codebase for testing whether hidden states of neural networks encode discrete structures.

structural-probes Codebase for testing whether hidden states of neural networks encode discrete structures. Based on the paper A Structural Probe for

John Hewitt 349 Dec 17, 2022
An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

An algorithm that handles large-scale aerial photo co-registration, based on SURF, RANSAC and PyTorch autograd.

Luna Yue Huang 41 Oct 29, 2022
Semi-supervised Learning for Sentiment Analysis

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining Code, models and Datasets for《Neural Semi-supervised Learning fo

47 Jan 01, 2023
This project aims to segment 4 common retinal lesions from Fundus Images.

This project aims to segment 4 common retinal lesions from Fundus Images.

Husam Nujaim 1 Oct 10, 2021
Predictive Modeling on Electronic Health Records(EHR) using Pytorch

Predictive Modeling on Electronic Health Records(EHR) using Pytorch Overview Although there are plenty of repos on vision and NLP models, there are ve

81 Jan 01, 2023
Improving XGBoost survival analysis with embeddings and debiased estimators

xgbse: XGBoost Survival Embeddings "There are two cultures in the use of statistical modeling to reach conclusions from data

Loft 242 Dec 30, 2022