Code in conjunction with the publication 'Contrastive Representation Learning for Hand Shape Estimation'

Overview

HanCo Dataset & Contrastive Representation Learning for Hand Shape Estimation

Code in conjunction with the publication: Contrastive Representation Learning for Hand Shape Estimation.

This repository contains code for inference of both networks: The one obtained from self-supervised contrastive pre-training and the network trained supervisedly for hand pose estimation. Additionally, we provide examples how to work with the HanCo dataset and release the pytorch Dataset that was used during our pre-training experiments. This dataset is an extension of the FreiHand dataset.

Visit our project page for additional information.

Requirements

Python environment

conda create -n contra-hand python=3.6
conda activate contra-hand
conda install -c pytorch pytorch=1.6.0 torchvision cudatoolkit=10.2
conda install -c conda-forge -c fvcore fvcore transforms3d
pip install pytorch3d transforms3d tqdm pytorch-lightning imgaug open3d matplotlib
pip install git+https://github.com/hassony2/chumpy.git

Hand Pose Dataset

You either need the full HanCo dataset or the small tester data sample (recommended).

Random Background Images

As the hand pose dataset contains green screen images, randomized backgrounds can be used. For our dataset we used 2195 images from Flickr. As these were not all licensed in a permissive manner, we provide a set of background images to use with the dataset. These can be found here.

MANO model

Our supervised training code uses the MANO Hand model, which you need to aquire seperately due to licensing regulations: https://mano.is.tue.mpg.de

In order for our code to work fine copy MANO_RIGHT.pkl from the MANO website to contra-hand/mano_models/MANO_RIGHT.pkl.

We also build on to of the great PyTorch implementation of MANO provided by Yana Hasson et al., which was modified by us and is already contained in this repository.

Trained models

We release both the MoCo pretrained model and the shape estimation network that was derived from it.

In order to get the trained models download and unpack them locally:

curl https://lmb.informatik.uni-freiburg.de/data/HanCo/contra-hand-ckpt.zip -o contra-hand-ckpt.zip & unzip contra-hand-ckpt.zip 

Code

This repository contains scripts that facilitate using the HanCo dataset and building on the results from our publication.

Show dataset

You will need to download the HanCo dataset (or at least the tester). This script gives you some examples on how to work with the dataset.

python show_dataset.py <Path-To-Your-Local-HanCo-Directory>

Use our MoCo trained model

There is a simple script that calculates the cosine similarity score for two hard coded examples:

python run_moco_fw.py

There is the script we used to create the respective figure in our paper.

python run_moco_qualitative_embedding.py

Self-Supervised Training with MoCo

We provide a torch data loader that can be used as a drop-in replacement for MoCo training. The data loader can be found here DatasetUnsupervisedMV.py. It has boolean options that control how the data is provided, these are cross_bg, cross_camera, and cross_time. The get_dataset function also shows the pre-processing that we use, which is slightly different from the standard MoCo pre-processing.

Use our MANO prediction model

The following script allows to run inference on an example image:

run_hand_shape_fw.py <Path-To-Your-Local-HanCo-Directory>
Owner
Computer Vision Group, Albert-Ludwigs-Universität Freiburg
Pattern Recognition and Image Processing
Computer Vision Group, Albert-Ludwigs-Universität Freiburg
Official code of the paper "Expanding Low-Density Latent Regions for Open-Set Object Detection" (CVPR 2022)

OpenDet Expanding Low-Density Latent Regions for Open-Set Object Detection (CVPR2022) Jiaming Han, Yuqiang Ren, Jian Ding, Xingjia Pan, Ke Yan, Gui-So

csuhan 64 Jan 07, 2023
Codes for paper "KNAS: Green Neural Architecture Search"

KNAS Codes for paper "KNAS: Green Neural Architecture Search" KNAS is a green (energy-efficient) Neural Architecture Search (NAS) approach. It contain

90 Dec 22, 2022
Solving Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge

Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge Associated code for the paper Zero-Shot Learning in Named Entity Recognitio

Søren Hougaard Mulvad 13 Dec 25, 2022
TransMorph: Transformer for Medical Image Registration

TransMorph: Transformer for Medical Image Registration keywords: Vision Transformer, Swin Transformer, convolutional neural networks, image registrati

Junyu Chen 180 Jan 07, 2023
Towards Debiasing NLU Models from Unknown Biases

Towards Debiasing NLU Models from Unknown Biases Abstract: NLU models often exploit biased features to achieve high dataset-specific performance witho

Ubiquitous Knowledge Processing Lab 22 Jun 14, 2022
Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion

CSF Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion Tips: For testing: CUDA_VISIBLE_DEVICES=0 python main.py For trai

Han Xu 14 Oct 31, 2022
Model Zoo of BDD100K Dataset

Model Zoo of BDD100K Dataset

ETH VIS Group 200 Dec 27, 2022
Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

183 Dec 28, 2022
Pytorch Lightning 1.2k Jan 06, 2023
Generating synthetic mobility data for a realistic population with RNNs to improve utility and privacy

lbs-data Motivation Location data is collected from the public by private firms via mobile devices. Can this data also be used to serve the public goo

Alex 11 Sep 22, 2022
FACIAL: Synthesizing Dynamic Talking Face With Implicit Attribute Learning. ICCV, 2021.

FACIAL: Synthesizing Dynamic Talking Face with Implicit Attribute Learning PyTorch implementation for the paper: FACIAL: Synthesizing Dynamic Talking

226 Jan 08, 2023
Facilitating Database Tuning with Hyper-ParameterOptimization: A Comprehensive Experimental Evaluation

A Comprehensive Experimental Evaluation for Database Configuration Tuning This is the source code to the paper "Facilitating Database Tuning with Hype

DAIR Lab 9 Oct 29, 2022
Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them"

ood-text-emnlp Code for EMNLP'21 paper "Types of Out-of-Distribution Texts and How to Detect Them" Files fine_tune.py is used to finetune the GPT-2 mo

Udit Arora 19 Oct 28, 2022
The Hailo Model Zoo includes pre-trained models and a full building and evaluation environment

Hailo Model Zoo The Hailo Model Zoo provides pre-trained models for high-performance deep learning applications. Using the Hailo Model Zoo you can mea

Hailo 50 Dec 07, 2022
Tutorials and implementations for "Self-normalizing networks"

Self-Normalizing Networks Tutorials and implementations for "Self-normalizing networks"(SNNs) as suggested by Klambauer et al. (arXiv pre-print). Vers

Institute of Bioinformatics, Johannes Kepler University Linz 1.6k Jan 07, 2023
🎯 A comprehensive gradient-free optimization framework written in Python

Solid is a Python framework for gradient-free optimization. It contains basic versions of many of the most common optimization algorithms that do not

Devin Soni 565 Dec 26, 2022
MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions

MVS2D: Efficient Multi-view Stereo via Attention-Driven 2D Convolutions Project Page | Paper If you find our work useful for your research, please con

96 Jan 04, 2023
Process text, including tokenizing and representing sentences as vectors and Applying some concepts like RNN, LSTM and GRU to create a classifier can detect the language in which a sentence is written from among 17 languages.

Language Identifier What is this ? The goal of this project is to create a model that is able to predict a given sentence language through text proces

Hossam Asaad 9 Dec 15, 2022
Cognition-aware Cognate Detection

Cognition-aware Cognate Detection The repository which contains our code for our EACL 2021 paper titled, "Cognition-aware Cognate Detection". This wor

Prashant K. Sharma 1 Feb 01, 2022
Open source implementation of AceNAS: Learning to Rank Ace Neural Architectures with Weak Supervision of Weight Sharing

AceNAS This repo is the experiment code of AceNAS, and is not considered as an official release. We are working on integrating AceNAS as a built-in st

Yuge Zhang 6 Sep 07, 2022