Task-based end-to-end model learning in stochastic optimization

Overview

Task-based End-to-end Model Learning in Stochastic Optimization

This repository is by Priya L. Donti, Brandon Amos, and J. Zico Kolter and contains the PyTorch source code to reproduce the experiments in our paper Task-based End-to-end Model Learning in Stochastic Optimization.

If you find this repository helpful in your publications, please consider citing our paper.

@inproceedings{donti2017task,
  title={Task-based end-to-end model learning in stochastic optimization},
  author={Donti, Priya and Amos, Brandon and Kolter, J Zico},
  booktitle={Advances in Neural Information Processing Systems},
  pages={5484--5494},
  year={2017}
}

Introduction

As machine learning techniques have become more ubiquitous, it has become common to see machine learning prediction algorithms operating within some larger process. However, the criteria by which we train machine learning algorithms often differ from the ultimate criteria on which we evaluate them.

This repository demonstrates an end-to-end approach for learning probabilistic machine learning models within the context of stochastic programming, in a manner that directly captures the ultimate task-based objective for which they will be used. Specifically, we evaluate our approach in the context of (a) a generic inventory stock problem and (b) an electrical grid scheduling task based on over eight years of data from PJM.

Please see our paper Task-based End-to-end Model Learning in Stochastic Optimization and the code in this repository (locuslab/e2e-model-learning) for more details about the general approach proposed and our initial experimental implementations.

Setup and Dependencies

Inventory Stock Problem (Newsvendor) Experiments

Experiments considering a "conditional" variation of the inventory stock problem. Problem instances are generated via random sampling.

newsvendor
├── main.py - Run inventory stock problem experiments. (See arguments.)
├── task_net.py - Functions for our task-based end-to-end model learning approach.
├── mle.py - Functions for linear maximum likelihood estimation approach.
├── mle_net.py - Functions for nonlinear maximum likelihood estimation approach.
├── policy_net.py - Functions for end-to-end neural network policy model.
├── batch.py - Helper functions for minibatched evaluation.
├── plot.py - Plot experimental results.
└── constants.py - Constants to set GPU vs. CPU.

Load Forecasting and Generator Scheduling Experiments

Experiments considering a realistic grid-scheduling task, in which electricity generation is scheduled based on some (unknown) distribution over electricity demand. Historical load data for these experiments were obtained from PJM.

power_sched
├── main.py - Run load forecasting problem experiments. (See arguments.)
├── model_classes.py - Models used for experiments.
├── nets.py - Functions for RMSE, cost-weighted RMSE, and task nets.
├── plot.py - Plot experimental results.
├── constants.py - Constants to set GPU vs. CPU.
└── pjm_load_data_*.txt - Historical load data from PJM.

Price Forecasting and Battery Storage Experiments

Experiments considering a realistic battery arbitrage task, in which a power grid-connected battery generates a charge/discharge schedule based on some (unknown) distribution over energy prices. Historical energy price data for these experiments were obtained from PJM.

battery_storage
├── main.py - Run battery storage problem experiments. (See arguments.)
├── model_classes.py - Models used for experiments.
├── nets.py - Functions for RMSE and task nets.
├── calc_stats.py - Calculate experimental result stats.
├── constants.py - Constants to set GPU vs. CPU.
└── storage_data.csv - Historical energy price data from PJM.

Acknowledgments

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE1252522.

Licensing

Unless otherwise stated, the source code is copyright Carnegie Mellon University and licensed under the Apache 2.0 License.

Owner
CMU Locus Lab
Zico Kolter's Research Group
CMU Locus Lab
Base pretrained models and datasets in pytorch (MNIST, SVHN, CIFAR10, CIFAR100, STL10, AlexNet, VGG16, VGG19, ResNet, Inception, SqueezeNet)

This is a playground for pytorch beginners, which contains predefined models on popular dataset. Currently we support mnist, svhn cifar10, cifar100 st

Aaron Chen 2.4k Dec 28, 2022
Code for the paper "Improving Vision-and-Language Navigation with Image-Text Pairs from the Web" (ECCV 2020)

Improving Vision-and-Language Navigation with Image-Text Pairs from the Web Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh

Arjun Majumdar 44 Dec 14, 2022
Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering

Nvdiffrast – Modular Primitives for High-Performance Differentiable Rendering Modular Primitives for High-Performance Differentiable Rendering Samuli

NVIDIA Research Projects 675 Jan 06, 2023
Official PyTorch code for WACV 2022 paper "CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows"

CFLOW-AD: Real-Time Unsupervised Anomaly Detection with Localization via Conditional Normalizing Flows WACV 2022 preprint:https://arxiv.org/abs/2107.1

Denis 156 Dec 28, 2022
HINet: Half Instance Normalization Network for Image Restoration

HINet: Half Instance Normalization Network for Image Restoration Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, Chengpeng Chen Paper: https://arxiv.org

303 Dec 31, 2022
This repo contains the source code and a benchmark for predicting user's utilities with Machine Learning techniques for Computational Persuasion

Machine Learning for Argument-Based Computational Persuasion This repo contains the source code and a benchmark for predicting user's utilities with M

Ivan Donadello 4 Nov 07, 2022
Implementation of 🦩 Flamingo, state-of-the-art few-shot visual question answering attention net out of Deepmind, in Pytorch

🦩 Flamingo - Pytorch Implementation of Flamingo, state-of-the-art few-shot visual question answering attention net, in Pytorch. It will include the p

Phil Wang 630 Dec 28, 2022
Automatically Build Multiple ML Models with a Single Line of Code. Created by Ram Seshadri. Collaborators Welcome. Permission Granted upon Request.

Auto-ViML Automatically Build Variant Interpretable ML models fast! Auto_ViML is pronounced "auto vimal" (autovimal logo created by Sanket Ghanmare) N

AutoViz and Auto_ViML 397 Dec 30, 2022
[ICRA 2022] CaTGrasp: Learning Category-Level Task-Relevant Grasping in Clutter from Simulation

This is the official implementation of our paper: Bowen Wen, Wenzhao Lian, Kostas Bekris, and Stefan Schaal. "CaTGrasp: Learning Category-Level Task-R

Bowen Wen 199 Jan 04, 2023
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 799 Dec 28, 2022
Official implementation of the PICASO: Permutation-Invariant Cascaded Attentional Set Operator

PICASO Official PyTorch implemetation for the paper PICASO:Permutation-Invariant Cascaded Attentive Set Operator. Requirements Python 3 torch = 1.0 n

Samira Zare 0 Dec 23, 2021
Weighing Counts: Sequential Crowd Counting by Reinforcement Learning

LibraNet This repository includes the official implementation of LibraNet for crowd counting, presented in our paper: Weighing Counts: Sequential Crow

Hao Lu 18 Nov 05, 2022
To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

Larissa Sayuri Futino Castro dos Santos 1 Jan 20, 2022
GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification

GB-CosFace: Rethinking Softmax-based Face Recognition from the Perspective of Open Set Classification This is the official pytorch implementation of t

Alibaba Cloud 5 Nov 14, 2022
Code for the paper: On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations

Non-Parametric Prior Actor-Critic (N-PPAC) This repository contains the code for On Pathologies in KL-Regularized Reinforcement Learning from Expert D

Cong Lu 5 May 13, 2022
BLEND: A Fast, Memory-Efficient, and Accurate Mechanism to Find Fuzzy Seed Matches

BLEND is a mechanism that can efficiently find fuzzy seed matches between sequences to significantly improve the performance and accuracy while reducing the memory space usage of two important applic

SAFARI Research Group at ETH Zurich and Carnegie Mellon University 19 Dec 26, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation "

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
A tiny, friendly, strong baseline code for Person-reID (based on pytorch).

Pytorch ReID Strong, Small, Friendly A tiny, friendly, strong baseline code for Person-reID (based on pytorch). Strong. It is consistent with the new

Zhedong Zheng 3.5k Jan 08, 2023
This repository contains all the code and materials distributed in the 2021 Q-Programming Summer of Qode.

Q-Programming Summer of Qode This repository contains all the code and materials distributed in the Q-Programming Summer of Qode. If you want to creat

Sammarth Kumar 11 Jun 11, 2021
Adabelief-Optimizer - Repository for NeurIPS 2020 Spotlight "AdaBelief Optimizer: Adapting stepsizes by the belief in observed gradients"

AdaBelief Optimizer NeurIPS 2020 Spotlight, trains fast as Adam, generalizes well as SGD, and is stable to train GANs. Release of package We have rele

Juntang Zhuang 998 Dec 29, 2022