[ICLR'19] Trellis Networks for Sequence Modeling

Overview

TrellisNet for Sequence Modeling

PWC PWC

This repository contains the experiments done in paper Trellis Networks for Sequence Modeling by Shaojie Bai, J. Zico Kolter and Vladlen Koltun.

On the one hand, a trellis network is a temporal convolutional network with special structure, characterized by weight tying across depth and direct injection of the input into deep layers. On the other hand, we show that truncated recurrent networks are equivalent to trellis networks with special sparsity structure in their weight matrices. Thus trellis networks with general weight matrices generalize truncated recurrent networks. This allows trellis networks to serve as bridge between recurrent and convolutional architectures, benefitting from algorithmic and architectural techniques developed in either context. We leverage these relationships to design high-performing trellis networks that absorb ideas from both architectural families. Experiments demonstrate that trellis networks outperform the current state of the art on a variety of challenging benchmarks, including word-level language modeling on Penn Treebank and WikiText-103 (UPDATE: recently surpassed by Transformer-XL), character-level language modeling on Penn Treebank, and stress tests designed to evaluate long-term memory retention.

Our experiments were done in PyTorch. If you find our work, or this repository helpful, please consider citing our work:

@inproceedings{bai2018trellis,
  author    = {Shaojie Bai and J. Zico Kolter and Vladlen Koltun},
  title     = {Trellis Networks for Sequence Modeling},
  booktitle = {International Conference on Learning Representations (ICLR)},
  year      = {2019},
}

Datasets

The code should be directly runnable with PyTorch 1.0.0 or above. This repository contains the training script for the following tasks:

  • Sequential MNIST handwritten digit classification
  • Permuted Sequential MNIST that randomly permutes the pixel order in sequential MNIST
  • Sequential CIFAR-10 classification (more challenging, due to more intra-class variations, channel complexities and larger images)
  • Penn Treebank (PTB) word-level language modeling (with and without the mixture of softmax); vocabulary size 10K
  • Wikitext-103 (WT103) large-scale word-level language modeling; vocabulary size 268K
  • Penn Treebank medium-scale character-level language modeling

Note that these tasks are on very different scales, with unique properties that challenge sequence models in different ways. For example, word-level PTB is a small dataset that a typical model easily overfits, so judicious regularization is essential. WT103 is a hundred times larger, with less danger of overfitting, but with a vocabulary size of 268K that makes training more challenging (due to large embedding size).

Pre-trained Model(s)

We provide some reasonably good pre-trained weights here so that the users don't need to train from scratch. We'll update the table from time to time. (Note: if you train from scratch using different seeds, it's likely you will get better results :-))

Description Task Dataset Model
TrellisNet-LM Word-Level Language Modeling Penn Treebank (PTB) download (.pkl)
TrellisNet-LM Character-Level Language Modeling Penn Treebank (PTB) download (.pkl)

To use the pre-trained weights, use the flag --load_weight [.pkl PATH] when starting the training script (e.g., you can just use the default arg parameters). You can use the flag --eval turn on the evaluation mode only.

Usage

All tasks share the same underlying TrellisNet model, which is in file trellisnet.py (and the eventual models, including components like embedding layer, are in model.py). As discussed in the paper, TrellisNet is able to benefit significantly from techniques developed originally for RNNs as well as temporal convolutional networks (TCNs). Some of these techniques are also included in this repository. Each task is organized in the following structure:

[TASK_NAME] /
    data/
    logs/
    [TASK_NAME].py
    model.py
    utils.py
    data.py

where [TASK_NAME].py is the training script for the task (with argument flags; use -h to see the details).

Owner
CMU Locus Lab
Zico Kolter's Research Group
CMU Locus Lab
Espial is an engine for automated organization and discovery of personal knowledge

Live Demo (currently not running, on it) Espial is an engine for automated organization and discovery in knowledge bases. It can be adapted to run wit

Uzay-G 159 Dec 30, 2022
Telegram bot to auto post messages of one channel in another channel as soon as it is posted, without the forwarded tag.

Channel Auto-Post Bot This bot can send all new messages from one channel, directly to another channel (or group, just in case), without the forwarded

Aditya 128 Dec 29, 2022
A list of NLP(Natural Language Processing) tutorials built on Tensorflow 2.0.

A list of NLP(Natural Language Processing) tutorials built on Tensorflow 2.0.

Won Joon Yoo 335 Jan 04, 2023
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

606 Dec 28, 2022
Repository for Graph2Pix: A Graph-Based Image to Image Translation Framework

Graph2Pix: A Graph-Based Image to Image Translation Framework Installation Install the dependencies in env.yml $ conda env create -f env.yml $ conda a

18 Nov 17, 2022
apple's universal binaries BUT MUCH WORSE (PRACTICAL SHITPOST) (NOT PRODUCTION READY)

hyperuniversality investment opportunity: what if we could run multiple architectures in a single file, again apple universal binaries, but worse how

luna 2 Oct 19, 2021
Code for the Python code smells video on the ArjanCodes channel.

7 Python code smells This repository contains the code for the Python code smells video on the ArjanCodes channel (watch the video here). The example

55 Dec 29, 2022
SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors

SAVI2I: Continuous and Diverse Image-to-Image Translation via Signed Attribute Vectors [Paper] [Project Website] Pytorch implementation for SAVI2I. We

Qi Mao 44 Dec 30, 2022
AI Assistant for Building Reliable, High-performing and Fair Multilingual NLP Systems

AI Assistant for Building Reliable, High-performing and Fair Multilingual NLP Systems

Microsoft 37 Nov 29, 2022
Python generation script for BitBirds

BitBirds generation script Intro This is published under MIT license, which means you can do whatever you want with it - entirely at your own risk. Pl

286 Dec 06, 2022
Code for paper Multitask-Finetuning of Zero-shot Vision-Language Models

Code for paper Multitask-Finetuning of Zero-shot Vision-Language Models

Zhenhailong Wang 2 Jul 15, 2022
Pretrained Japanese BERT models

Pretrained Japanese BERT models This is a repository of pretrained Japanese BERT models. The models are available in Transformers by Hugging Face. Mod

Inui Laboratory 387 Dec 30, 2022
Shellcode antivirus evasion framework

Schrodinger's Cat Schrodinger'sCat is a Shellcode antivirus evasion framework Technical principle Please visit my blog https://idiotc4t.com/ How to us

idiotc4t 27 Jul 09, 2022
CCKS-Title-based-large-scale-commodity-entity-retrieval-top1

- 基于标题的大规模商品实体检索top1 一、任务介绍 CCKS 2020:基于标题的大规模商品实体检索,任务为对于给定的一个商品标题,参赛系统需要匹配到该标题在给定商品库中的对应商品实体。 输入:输入文件包括若干行商品标题。 输出:输出文本每一行包括此标题对应的商品实体,即给定知识库中商品 ID,

43 Nov 11, 2022
A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework.

Unpacker Karton Service A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework. This project is

c3rb3ru5 45 Jan 05, 2023
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ Getting started Prerequ

Cambridge Quantum 315 Jan 01, 2023
A programming language with logic of Python, and syntax of all languages.

Pytov The idea was to take all well known syntaxes, and combine them into one programming language with many posabilities. Installation Install using

Yuval Rosen 14 Dec 07, 2022
Using Bert as the backbone model for lime, designed for NLP task explanation (sentence pair text classification task)

Lime Comparing deep contextualized model for sentences highlighting task. In addition, take the classic explanation model "LIME" with bert-base model

JHJu 2 Jan 18, 2022
STT for TorchScript is a port of Coqui STT based on DeepSpeech to PyTorch.

st3 STT for TorchScript is a port of Coqui STT based on DeepSpeech to PyTorch. Currently it supports converting pbmm models to pt scripts with integra

Vlad Ki 8 Oct 18, 2021
मराठी भाषा वाचविण्याचा एक प्रयास. इंग्रजी ते मराठीचा शब्दकोश. An attempt to preserve the Marathi language. A lightweight and ad free English to Marathi thesaurus.

For English, scroll down मराठी शब्द मराठी भाषा वाचवण्यासाठी मी हा ओपन सोर्स प्रोजेक्ट सुरू केला आहे. माझ्या मते, आपली भाषा हळूहळू आणि कोणाचाही लक्षात

मुक्त स्त्रोत 20 Oct 11, 2022