Create animations for the optimization trajectory of neural nets

Overview

Animating the Optimization Trajectory of Neural Nets

PyPi Latest Release Release License

loss-landscape-anim lets you create animated optimization path in a 2D slice of the loss landscape of your neural networks. It is based on PyTorch Lightning, please follow its suggested style if you want to add your own model.

Check out my article Visualizing Optimization Trajectory of Neural Nets for more examples and some intuitive explanations.

0. Installation

From PyPI:

pip install loss-landscape-anim

From source, you need Poetry. Once you cloned this repo, run the command below to install the dependencies.

poetry install

1. Basic Examples

With the provided spirals dataset and the default multilayer perceptron MLP model, you can directly call loss_landscape_anim to get a sample animated GIF like this:

# Use default MLP model and sample spirals dataset
loss_landscape_anim(n_epochs=300)

sample gif 1

Note: if you are using it in a notebook, don't forget to include the following at the top:

%matplotlib notebook

Here's another example – the LeNet5 convolutional network on the MNIST dataset. There are many levers you can tune: learning rate, batch size, epochs, frames per second of the GIF output, a seed for reproducible results, whether to load from a trained model, etc. Check out the function signature for more details.

bs = 16
lr = 1e-3
datamodule = MNISTDataModule(batch_size=bs, n_examples=3000)
model = LeNet(learning_rate=lr)

optim_path, loss_steps, accu_steps = loss_landscape_anim(
    n_epochs=10,
    model=model,
    datamodule=datamodule,
    optimizer="adam",
    giffps=15,
    seed=SEED,
    load_model=False,
    output_to_file=True,
    return_data=True,  # Optional return values if you need them
    gpus=1  # Enable GPU training if available
)

GPU training is supported. Just pass gpus into loss_landscape_anim if they are available.

The output of LeNet5 on the MNIST dataset looks like this:

sample gif 2

2. Why PCA?

To create a 2D visualization, the first thing to do is to pick the 2 directions that define the plane. In the paper Visualizing the Loss Landscape of Neural Nets, the authors argued why 2 random directions don't work and why PCA is much better. In summary,

  1. 2 random vectors in high dimensional space have a high probability of being orthogonal, and they can hardly capture any variation for the optimization path. The path’s projection onto the plane spanned by the 2 vectors will just look like random walk.

  2. If we pick one direction to be the vector pointing from the initial parameters to the final trained parameters, and another direction at random, the visualization will look like a straight line because the second direction doesn’t capture much variance compared to the first.

  3. If we use principal component analysis (PCA) on the optimization path and get the top 2 components, we can visualize the loss over the 2 orthogonal directions with the most variance.

For showing the most motion in 2D, PCA is preferred. If you need a quick recap on PCA, here's a minimal example you can go over under 3 minutes.

3. Random and Custom Directions

Although PCA is a good approach for picking the directions, if you need more control, the code also allows you to set any 2 fixed directions, either generated at random or handpicked.

For 2 random directions, set reduction_method to "random", e.g.

loss_landscape_anim(n_epochs=300, load_model=False, reduction_method="random")

For 2 fixed directions of your choosing, set reduction_method to "custom", e.g.

import numpy as np

n_params = ... # number of parameters your model has
u_gen = np.random.normal(size=n_params)
u = u_gen / np.linalg.norm(u_gen)
v_gen = np.random.normal(size=n_params)
v = v_gen / np.linalg.norm(v_gen)

loss_landscape_anim(
    n_epochs=300, load_model=False, reduction_method="custom", custom_directions=(u, v)
)

Here is an sample GIF produced by two random directions:

sample gif 3

By default, reduction_method="pca".

4. Custom Dataset and Model

  1. Prepare your DataModule. Refer to datamodule.py for examples.
  2. Define your custom model that inherits model.GenericModel. Refer to model.py for examples.
  3. Once you correctly setup your custom DataModule and model, call the function as shown below to train the model and plot the loss landscape animation.
bs = ...
lr = ...
datamodule = YourDataModule(batch_size=bs)
model = YourModel(learning_rate=lr)

loss_landscape_anim(
    n_epochs=10,
    model=model,
    datamodule=datamodule,
    optimizer="adam",
    seed=SEED,
    load_model=False,
    output_to_file=True
)

5. Comparing Different Optimizers

As mentioned in section 2, the optimization path usually falls into a very low-dimensional space, and its projection in other directions may look like random walk. On the other hand, different optimizers can take very different paths in the high dimensional space. As a result, it is difficult to pick 2 directions to effectively compare different optimizers.

In this example, I have adam, sgd, adagrad, rmsprop initialized with the same parameters. The two figures below share the same 2 random directions but are centered around different local minima. The first figure centers around the one Adam finds, the second centers around the one RMSprop finds. Essentially, the planes are 2 parallel slices of the loss landscape.

The first figure shows that when centering on the end of Adam's path, it looks like RMSprop is going somewhere with larger loss value. But that is an illusion. If you inspect the loss values of RMSprop, it actually finds a local optimum that has a lower loss than Adam's.

Same 2 directions centering on Adam's path:

adam

Same 2 directions centering on RMSprop's path:

rmsprop

This is a good reminder that the contours are just a 2D slice out of a very high-dimensional loss landscape, and the projections can't reflect the actual path.

However, we can see that the contours are convex no matter where it centers around in these 2 special cases. It more or less reflects that the optimizers shouldn't have a hard time finding a relatively good local minimum. To measure convexity more rigorously, the paper [1] mentioned a better method – using principal curvature, i.e. the eigenvalues of the Hessian. Check out the end of section 6 in the paper for more details.

Reference

[1] Visualizing the Loss Landscape of Neural Nets

You might also like...
Real-CUGAN - Real Cascade U-Nets for Anime Image Super Resolution

Real Cascade U-Nets for Anime Image Super Resolution 中文 | English 🔥 Real-CUGAN

Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)
Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)

scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A

library for nonlinear optimization, wrapping many algorithms for global and local, constrained or unconstrained, optimization

NLopt is a library for nonlinear local and global optimization, for functions with and without gradient information. It is designed as a simple, unifi

Racing line optimization algorithm in python that uses Particle Swarm Optimization.
Racing line optimization algorithm in python that uses Particle Swarm Optimization.

Racing Line Optimization with PSO This repository contains a racing line optimization algorithm in python that uses Particle Swarm Optimization. Requi

Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers

Motionformer This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this rep

Learning trajectory representations using self-supervision and programmatic supervision.
Learning trajectory representations using self-supervision and programmatic supervision.

Trajectory Embedding for Behavior Analysis (TREBA) Implementation from the paper: Jennifer J. Sun, Ann Kennedy, Eric Zhan, David J. Anderson, Yisong Y

A selection of State Of The Art research papers (and code) on human locomotion (pose + trajectory) prediction (forecasting)

A selection of State Of The Art research papers (and code) on human trajectory prediction (forecasting). Papers marked with [W] are workshop papers.

A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.
A Planar RGB-D SLAM which utilizes Manhattan World structure to provide optimal camera pose trajectory while also providing a sparse reconstruction containing points, lines and planes, and a dense surfel-based reconstruction.

ManhattanSLAM Authors: Raza Yunus, Yanyan Li and Federico Tombari ManhattanSLAM is a real-time SLAM library for RGB-D cameras that computes the camera

This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivariant Continuous Convolution
This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivariant Continuous Convolution

Trajectory Prediction using Equivariant Continuous Convolution (ECCO) This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivar

Owner
Logan Yang
Software engineer, machine learning practitioner
Logan Yang
Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Google Cloud Platform 792 Dec 28, 2022
A PyTorch implementation of "Semi-Supervised Graph Classification: A Hierarchical Graph Perspective" (WWW 2019)

SEAL ⠀⠀⠀ A PyTorch implementation of Semi-Supervised Graph Classification: A Hierarchical Graph Perspective (WWW 2019) Abstract Node classification an

Benedek Rozemberczki 202 Dec 27, 2022
Optical Character Recognition + Instance Segmentation for russian and english languages

Распознавание рукописного текста в школьных тетрадях Соревнование, проводимое в рамках олимпиады НТО, разработанное Сбером. Платформа ODS. Результаты

Gerasimov Maxim 21 Dec 19, 2022
Author's PyTorch implementation of TD3+BC, a simple variant of TD3 for offline RL

A Minimalist Approach to Offline Reinforcement Learning TD3+BC is a simple approach to offline RL where only two changes are made to TD3: (1) a weight

Scott Fujimoto 193 Dec 23, 2022
Evolving neural network parameters in JAX.

Evolving Neural Networks in JAX This repository holds code displaying techniques for applying evolutionary network training strategies in JAX. Each sc

Trevor Thackston 6 Feb 12, 2022
Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution

Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution Abstract Within the Latin (and ancient Greek) production, it is well

4 Dec 03, 2022
Like ThreeJS but for Python and based on wgpu

pygfx A render engine, inspired by ThreeJS, but for Python and targeting Vulkan/Metal/DX12 (via wgpu). Introduction This is a Python render engine bui

139 Jan 07, 2023
LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation (NeurIPS2021 Benchmark and Dataset Track)

LoveDA: A Remote Sensing Land-Cover Dataset for Domain Adaptive Semantic Segmentation by Junjue Wang, Zhuo Zheng, Ailong Ma, Xiaoyan Lu, and Yanfei Zh

Kingdrone 174 Dec 22, 2022
Yolov5 deepsort inference,使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

813 Dec 31, 2022
Example of semantic segmentation in Keras

keras-semantic-segmentation-example Example of semantic segmentation in Keras Single class example: Generated data: random ellipse with random color o

53 Mar 23, 2022
An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" in Pytorch.

GLOM An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" for MNIST Dataset. To understand this

50 Oct 19, 2022
[CVPR 2020] Local Class-Specific and Global Image-Level Generative Adversarial Networks for Semantic-Guided Scene Generation

Contents Local and Global GAN Cross-View Image Translation Semantic Image Synthesis Acknowledgments Related Projects Citation Contributions Collaborat

Hao Tang 131 Dec 07, 2022
Code and models for ICCV2021 paper "Robust Object Detection via Instance-Level Temporal Cycle Confusion".

Robust Object Detection via Instance-Level Temporal Cycle Confusion This repo contains the implementation of the ICCV 2021 paper, Robust Object Detect

Xin Wang 69 Oct 13, 2022
Randstad Artificial Intelligence Challenge (powered by VGEN). Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato

Randstad Artificial Intelligence Challenge (powered by VGEN) Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato Struttura director

Stefano Fiorucci 1 Nov 13, 2021
Deep Halftoning with Reversible Binary Pattern

Deep Halftoning with Reversible Binary Pattern ICCV Paper | Project Website | BibTex Overview Existing halftoning algorithms usually drop colors and f

Menghan Xia 17 Nov 22, 2022
Pyramid addon for OpenAPI3 validation of requests and responses.

Validate Pyramid views against an OpenAPI 3.0 document Peace of Mind The reason this package exists is to give you peace of mind when providing a REST

Pylons Project 79 Dec 30, 2022
SingleVC performs any-to-one VC, which is an important component of MediumVC project.

SingleVC performs any-to-one VC, which is an important component of MediumVC project. Here is the official implementation of the paper, MediumVC.

谷下雨 26 Dec 28, 2022
Emotional conditioned music generation using transformer-based model.

This is the official repository of EMOPIA: A Multi-Modal Pop Piano Dataset For Emotion Recognition and Emotion-based Music Generation. The paper has b

hung anna 96 Nov 09, 2022
2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案

2020CCF-NER 2020 CCF大数据与计算智能大赛-非结构化商业文本信息中隐私信息识别-第7名方案 bert base + flat + crf + fgm + swa + pu learning策略 + clue数据集 = test1单模0.906 词向量

67 Oct 19, 2022
PiRapGenerator - Make anyone rap the digits of pi

PiRapGenerator Make anyone rap the digits of pi (sample files are of Ted Nivison

7 Oct 02, 2022