Adaptable tools to make reinforcement learning and evolutionary computation algorithms.

Overview

pipeline status codecov codestyle

Pearl

The Parallel Evolutionary and Reinforcement Learning Library (Pearl) is a pytorch based package with the goal of being excellent for rapid prototyping of new adaptive decision making algorithms in the intersection between reinforcement learning (RL) and evolutionary computation (EC). As such, this is not intended to provide template pre-built algorithms as a baseline, but rather flexible tools to allow the user to quickly build and test their own implementations and ideas. A technical report can be found here.

Main Features

Features Pearl
RL algorithms (e.g. Actor Critic) ✔️
EC algorithms (e.g. Genetic Algorithm) ✔️
Hybrid algorithms (e.g. CEM-DDPG) ✔️
Multi-agent suppport ✔️
Tensorboard integration ✔️
Modular and extensible components ✔️
Opinionated module settings ✔️
Custom callbacks ✔️

User Guide

Installation

There are two options to install this package:

  1. pip install pearll
  2. git clone [email protected]:LondonNode/Pearl.git

Module Guide

  • agents: implementations of RL and EC agents where the other modular components are put together
  • buffers: these handle storing and sampling of trajectories
  • callbacks: inject logic for every step made in an environment (e.g. save model, early stopping)
  • common: common methods applicable to all other modules (e.g. enumerations) and a main utils.py file with some useful general logic
  • explorers: action explorers for enhanced exploration by adding noise to actions and random exploration for first n steps
  • models: neural network structures which are structured as encoder -> torso -> head
  • signal_processing: signal processing logic for extra modularity (e.g. TD returns, GAE)
  • updaters: update neural networks and adaptive/iterative algorithms
  • settings.py: settings objects for the above components, can be extended for custom components

Agent Templates

See pearll/agents/templates.py for the templates to create your own agents! For more examples, see specific agent implementations under pearll/agents.

Agent Performance

To see training performance, use the command tensorboard --logdir runs or tensorboard --logdir <tensorboard_log_path> defined in your algorithm class initialization.

Python Scripts

To run these you'll need to go to wherever the library is installed, cd pearll.

  • demo.py: script to run very basic demos of agents with pre-defined hyperparameters, run python3 -m pearll.demo -h for more info
  • plot.py: script to plot more complex plots that can't be obtained via Tensorboard (e.g. multiple subplots), run python3 -m pearll.plot -h for more info

Developer Guide

Scripts

Linux

  1. scripts/setup_dev.sh: setup your virtual environment
  2. scripts/run_tests.sh: run tests

Windows

  1. scripts/windows_setup_dev.bat: setup your virtual environment
  2. scripts/windows_run_tests.bat: run tests

Dependency Management

Pearl uses poetry for dependency management and build release instead of pip. As a quick guide:

  1. Run poetry add [package] to add more package dependencies.
  2. Poetry automatically handles the virtual environment used, check pyproject.toml for specifics on the virtual environment setup.
  3. If you want to run something in the poetry virtual environment, add poetry run as a prefix to the command you want to execute. For example, to run a python file: poetry run python3 script.py.

Credit

Citing Pearl

@misc{tangri2022pearl,
      title={Pearl: Parallel Evolutionary and Reinforcement Learning Library}, 
      author={Rohan Tangri and Danilo P. Mandic and Anthony G. Constantinides},
      year={2022},
      eprint={2201.09568},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Acknowledgements

Pearl was inspired by Stable Baselines 3 and Tonic

You might also like...
BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalanced Tongue Data

Balanced-Evolutionary-Semi-Stacking Code for the paper ''BESS: Balanced Evolutionary Semi-Stacking for Disease Detection via Partially Labeled Imbalan

Systemic Evolutionary Chemical Space Exploration for Drug Discovery
Systemic Evolutionary Chemical Space Exploration for Drug Discovery

SECSE SECSE: Systemic Evolutionary Chemical Space Explorer Chemical space exploration is a major task of the hit-finding process during the pursuit of

Deep learning with dynamic computation graphs in TensorFlow
Deep learning with dynamic computation graphs in TensorFlow

TensorFlow Fold TensorFlow Fold is a library for creating TensorFlow models that consume structured data, where the structure of the computation graph

A toolkit for developing and comparing reinforcement learning algorithms.

Status: Maintenance (expect bug fixes and minor updates) OpenAI Gym OpenAI Gym is a toolkit for developing and comparing reinforcement learning algori

PyTorch implementations of deep reinforcement learning algorithms and environments
PyTorch implementations of deep reinforcement learning algorithms and environments

Deep Reinforcement Learning Algorithms with PyTorch This repository contains PyTorch implementations of deep reinforcement learning algorithms and env

Pytorch implementations of popular off-policy multi-agent reinforcement learning algorithms, including QMix, VDN, MADDPG, and MATD3.

Off-Policy Multi-Agent Reinforcement Learning (MARL) Algorithms This repository contains implementations of various off-policy multi-agent reinforceme

Reinforcement learning framework and algorithms implemented in PyTorch.

Reinforcement learning framework and algorithms implemented in PyTorch.

Independent and minimal implementations of some reinforcement learning algorithms using PyTorch (including PPO, A3C, A2C, ...).

PyTorch RL Minimal Implementations There are implementations of some reinforcement learning algorithms, whose characteristics are as follow: Less pack

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.
PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

Comments
  • Bump pillow from 9.0.0 to 9.0.1

    Bump pillow from 9.0.0 to 9.0.1

    Bumps pillow from 9.0.0 to 9.0.1.

    Release notes

    Sourced from pillow's releases.

    9.0.1

    https://pillow.readthedocs.io/en/stable/releasenotes/9.0.1.html

    Changes

    • In show_file, use os.remove to remove temporary images. CVE-2022-24303 #6010 [@​radarhere, @​hugovk]
    • Restrict builtins within lambdas for ImageMath.eval. CVE-2022-22817 #6009 [radarhere]
    Changelog

    Sourced from pillow's changelog.

    9.0.1 (2022-02-03)

    • In show_file, use os.remove to remove temporary images. CVE-2022-24303 #6010 [radarhere, hugovk]

    • Restrict builtins within lambdas for ImageMath.eval. CVE-2022-22817 #6009 [radarhere]

    Commits
    • 6deac9e 9.0.1 version bump
    • c04d812 Update CHANGES.rst [ci skip]
    • 4fabec3 Added release notes for 9.0.1
    • 02affaa Added delay after opening image with xdg-open
    • ca0b585 Updated formatting
    • 427221e In show_file, use os.remove to remove temporary images
    • c930be0 Restrict builtins within lambdas for ImageMath.eval
    • 75b69dd Dont need to pin for GHA
    • cd938a7 Autolink CWE numbers with sphinx-issues
    • 2e9c461 Add CVE IDs
    • See full diff in compare view

    Dependabot compatibility score

    Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


    Dependabot commands and options

    You can trigger Dependabot actions by commenting on this PR:

    • @dependabot rebase will rebase this PR
    • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
    • @dependabot merge will merge this PR after your CI passes on it
    • @dependabot squash and merge will squash and merge this PR after your CI passes on it
    • @dependabot cancel merge will cancel a previously requested merge and block automerging
    • @dependabot reopen will reopen this PR if it is closed
    • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
    • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
    • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)
    • @dependabot use these labels will set the current labels as the default for future PRs for this repo and language
    • @dependabot use these reviewers will set the current reviewers as the default for future PRs for this repo and language
    • @dependabot use these assignees will set the current assignees as the default for future PRs for this repo and language
    • @dependabot use this milestone will set the current milestone as the default for future PRs for this repo and language

    You can disable automated security fix PRs for this repo from the Security Alerts page.

    dependencies 
    opened by dependabot[bot] 1
  • Feature/hybrid

    Feature/hybrid

    Overhaul models and base agent structure to accommodate RL, MARL, EC in optimizing static functions and RL environments and hybrid algorithms combining RL and EC.

    opened by 09tangriro 1
  • MORE AGENTS

    MORE AGENTS

    The more agents created the better proof that the tools underlying work as intended.

    Agents should be tested on particular environments to ensure performance.

    feature good first issue 
    opened by 09tangriro 0
Releases(v0.4.1)
Official implementation of Rethinking Graph Neural Architecture Search from Message-passing (CVPR2021)

Rethinking Graph Neural Architecture Search from Message-passing Intro The GNAS can automatically learn better architecture with the optimal depth of

Shaofei Cai 48 Sep 30, 2022
3D position tracking for soccer players with multi-camera videos

This repo contains a full pipeline to support 3D position tracking of soccer players, with multi-view calibrated moving/fixed video sequences as inputs.

Yuchang Jiang 72 Dec 27, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
Time series annotation library.

CrowdCurio Time Series Annotator Library The CrowdCurio Time Series Annotation Library implements classification tasks for time series. Features Suppo

CrowdCurio 51 Sep 15, 2022
Hand gesture recognition model that can be used as a remote control for a smart tv.

Gesture_recognition The training data consists of a few hundred videos categorised into one of the five classes. Each video (typically 2-3 seconds lon

Pratyush Negi 1 Aug 11, 2022
[CIKM 2019] Code and dataset for "Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Prediction"

FiGNN for CTR prediction The code and data for our paper in CIKM2019: Fi-GNN: Modeling Feature Interactions via Graph Neural Networks for CTR Predicti

Big Data and Multi-modal Computing Group, CRIPAC 75 Dec 30, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Jan 04, 2023
Code for Overinterpretation paper Overinterpretation reveals image classification model pathologies

Overinterpretation This repository contains the code for the paper: Overinterpretation reveals image classification model pathologies Authors: Brandon

Gifford Lab, MIT CSAIL 17 Dec 10, 2022
Codecov coverage standard for Python

Python-Standard Last Updated: 01/07/22 00:09:25 What is this? This is a Python application, with basic unit tests, for which coverage is uploaded to C

Codecov 10 Nov 04, 2022
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
UIUCTF 2021 Public Challenge Repository

UIUCTF-2021-Public UIUCTF 2021 Public Challenge Repository Notes: every challenge folder contains a challenge.yml file in the format for ctfcli, CTFd'

SIGPwny 15 Nov 03, 2022
The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

The PASS dataset: pretrained models and how to get the data - PASS: Pictures without humAns for Self-Supervised Pretraining

Yuki M. Asano 249 Dec 22, 2022
SmallInitEmb - LayerNorm(SmallInit(Embedding)) in a Transformer to improve convergence

SmallInitEmb LayerNorm(SmallInit(Embedding)) in a Transformer I find that when t

PENG Bo 11 Dec 25, 2022
DFM: A Performance Baseline for Deep Feature Matching

DFM: A Performance Baseline for Deep Feature Matching Python (Pytorch) and Matlab (MatConvNet) implementations of our paper DFM: A Performance Baselin

143 Jan 02, 2023
A PyTorch-based Semi-Supervised Learning (SSL) Codebase for Pixel-wise (Pixel) Vision Tasks

PixelSSL is a PyTorch-based semi-supervised learning (SSL) codebase for pixel-wise (Pixel) vision tasks. The purpose of this project is to promote the

Zhanghan Ke 255 Dec 11, 2022
A Python library for common tasks on 3D point clouds

Point Cloud Utils (pcu) - A Python library for common tasks on 3D point clouds Point Cloud Utils (pcu) is a utility library providing the following fu

Francis Williams 622 Dec 27, 2022
Job-Recommend-Competition - Vectorwise Interpretable Attentions for Multimodal Tabular Data

SiD - Simple Deep Model Vectorwise Interpretable Attentions for Multimodal Tabul

Jungwoo Park 40 Dec 22, 2022
Mmrotate - OpenMMLab Rotated Object Detection Benchmark

OpenMMLab website HOT OpenMMLab platform TRY IT OUT 📘 Documentation | 🛠️ Insta

OpenMMLab 1.2k Jan 04, 2023
Neural Module Network for VQA in Pytorch

Neural Module Network (NMN) for VQA in Pytorch Note: This is NOT an official repository for Neural Module Networks. NMN is a network that is assembled

Harsh Trivedi 111 Nov 24, 2022
Conceptual 12M is a dataset containing (image-URL, caption) pairs collected for vision-and-language pre-training.

Conceptual 12M We introduce the Conceptual 12M (CC12M), a dataset with ~12 million image-text pairs meant to be used for vision-and-language pre-train

Google Research Datasets 226 Dec 07, 2022