Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

Related tags

Deep LearningPyRAI2MD
Overview

Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

                              /\
   |\    /|                  /++\
   ||\  /||                 /++++\
   || \/ || ||             /++++++\
   ||    || ||            /PyRAI2MD\
   ||    || ||           /++++++++++\                    __
            ||          /++++++++++++\    |\ |  /\  |\/| | \
            ||__ __    *==============*   | \| /--\ |  | |_/

                          Python Rapid
                     Artificial Intelligence
                  Ab Initio Molecular Dynamics



                      Author @Jingbai Li
               Northeastern University, Boston, USA

                          version:   2.0 alpha
                          

  With contriutions from (in alphabetic order):
    Jingbai Li                 - Fewest switches surface hopping
                                 Zhu-Nakamura surface hopping
                                 Velocity Verlet
                                 OpenMolcas interface
                                 OpenMolcas/Tinker interface
                                 BAGEL interface
                                 Adaptive sampling
                                 Grid search
                                 Two-layer ONIOM (coming soon)
                                 Periodic boundary condition (coming soon)
                                 QC/ML hybrid NAMD

    Patrick Reiser             - Neural networks (pyNNsMD)

  Special acknowledgement to:
    Steven A. Lopez            - Project directorship
    Pascal Friederich          - ML directoriship>

Features

  • Machine learning nonadibatic molecular dyanmics (ML-NAMD).
  • Neural network training and grid search.
  • Active learning with ML-NAMD trajectories.
  • Support BAGEL, Molcas for QM, and Molcas/Tinker for QM/MM calculations.
  • Support nonadibatic coupling and spin-orbit coupling (Molcas only)

Prerequisite

  • Python >=3.7 PyRAI2MD is written and tested in Python 3.7.4. Older version of Python is not tested and might not be working properly.
  • TensorFlow >=2.2 TensorFlow/Keras API is required to load the trained NN models and predict energy and force.
  • Cython PyRAI2MD uses Cython library for efficient surface hopping calculation.
  • Matplotlib/Numpy Scientifc graphing and numerical library for plotting training statistic and array manipulation.

Content

 File/Folder Name                                  Description                                      
---------------------------------------------------------------------------------------------------
 pyrai2md.py                                       PyRAI2MD interface                              
 PyRAI2MD                                          source codes folder
  |--variables.py                                  PyRAI2MD input reader                           
  |--method.py                                     PyRAI2MD method manager                         
  |--Molecule                                      atom, molecule, trajectory code folder
  |   |--atom.py                                   atomic properties class                         
  |   |--molecule.py                               molecular properties class                      
  |   |--trajectory.py                             trajectory properties class                     
  |   |--pbc_helper.py                             periodic boundary condition functions           
  |    `-qmmm_helper.py                            qmmm functions                                  
  |
  |--Quantum_Chemistry                             quantum chemicial program interface folder
  |   |--qc_molcas.py                              OpenMolcas interface                            
  |   |--qc_bagel.py                               BAGEL interface                                 
  |    `-qc_molcas_tinker                          OpenMolcas/Tinker interface                     
  |
  |--Machine_Learning                              machine learning library interface folder
  |   |--training_data.py                          training data manager                           
  |   |--model_NN.py                               neural network interface                        
  |   |--hypernn.py                                hyperparameter manager                          
  |   |--permutation.py                            data permutation functions                      
  |   |--adaptive_sampling.py                      adaptive sampling class                         
  |   |--grid_search.py                            grid search class                               
  |   |--remote_train.py                           distribute remote training                      
  |    `-pyNNsMD                                   neural network library                         
  |
  |--Dynamics                                      ab initio molecular dynamics code folder
  |   |--aimd.py                                   molecular dynamics class                        
  |   |--mixaimd.py                                ML-QC hybrid molecular dynamics class           
  |   |--single_point.py                           single point calculation                        
  |   |--hop_probability.py                        surface hopping probability calculation         
  |   |--reset_velocity.py                         velocity adjustment functions                   
  |   |--verlet.py                                 velocity verlet method                          
  |   |--Ensembles                                 thermodynamics control code folder
  |   |   |--ensemble.py                           thermodynamics ensemble manager                 
  |   |   |--microcanonical.py                     microcanonical ensemble                         
  |   |    `-thermostat.py                         canonical ensemble                              
  |   |
  |    `-Propagators                               electronic propagation code folder
  |       |--surface_hopping.py                    surface hopping manager                         
  |       |--fssh.pyx                              fewest switches surface hopping method          
  |       |--gsh.py                                generalized surface hopping method              
  |        `-tsh_helper.py                         trajectory surface hopping tools                
  |
   `-Utils                                         utility folder
      |--aligngeom.py                              geometry aligment and comparison functions      
      |--coordinates.py                            coordinates writing functions                   
      |--read_tools.py                             index reader                                    
      |--bonds.py                                  bond length library                            
      |--sampling.py                               initial condition sampling functions            
      |--timing.py                                 timing functions                                
       `-logo.py                                   logo and credits                                    

Installation

Download the repository

git clone https://github.com/lopez-lab/PyRAI2MD.git

Specify environment variable of PyRAI2MD

export PYRAI2MD=/path/to/PyRAI2MD

Test PyRAI2MD

Copy the test script and modify environment variables

cp $PYRAI2MD/Tool/test_PyRAI2MD.sh .
bash test_PyRAI2MD.sh

Or directly run if environment variables are set

$PYRAI2MD/pyrai2md.py quicktest

Run PyRAI2MD

$PYRAI2MD/pyrai2md.py input

User manual

We are currently working on the user manual.

Cite us

  • Jingbai Li, Patrick Reiser, Benjamin R. Boswell, André Eberhard, Noah Z. Burns, Pascal Friederich, and Steven A. Lopez, "Automatic discovery of photoisomerization mechanisms with nanosecond machine learning photodynamics simulations", Chem. Sci. 2021. DOI: 10.1039/D0SC05610C
  • Jingbai Li, Rachel Stein, Daniel Adrion, Steven A. Lopez, "Machine-learning photodynamics simulations uncover the role of substituent effects on the photochemical formation of cubanes", ChemRxiv, preprint, DOI:10.33774/chemrxiv-2021-lxsjk
Continual Learning of Long Topic Sequences in Neural Information Retrieval

ContinualPassageRanking Repository for the paper "Continual Learning of Long Topic Sequences in Neural Information Retrieval". In this repository you

0 Apr 12, 2022
Official pytorch implementation of DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces

DeformSyncNet: Deformation Transfer via Synchronized Shape Deformation Spaces Minhyuk Sung*, Zhenyu Jiang*, Panos Achlioptas, Niloy J. Mitra, Leonidas

Zhenyu Jiang 21 Aug 30, 2022
ESP32 python application to read data from a Tilt™ Hydrometer for homebrewing

TitlESP32 ESP32 MicroPython application to read and log data from a Tilt™ Hydrometer. Requirements A board with an ESP32 chip USB cable - USB A / micr

IoBeer 5 Dec 01, 2022
Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.

vid2vid Project | YouTube(short) | YouTube(full) | arXiv | Paper(full) Pytorch implementation for high-resolution (e.g., 2048x1024) photorealistic vid

NVIDIA Corporation 8.1k Jan 01, 2023
Automatically align face images 🙃→🙂. Can also do windowing and warping.

Automatic Face Alignment (AFA) Carl M. Gaspar & Oliver G.B. Garrod You have lots of photos of faces like this: But you want to line up all of the face

Carl Michael Gaspar 15 Dec 12, 2022
pytorch implementation of GPV-Pose

GPV-Pose Pytorch implementation of GPV-Pose: Category-level Object Pose Estimation via Geometry-guided Point-wise Voting. (link) UPDATE A new version

40 Dec 01, 2022
PyTorch Implementation of Unsupervised Depth Completion with Calibrated Backprojection Layers (ORAL, ICCV 2021)

Unsupervised Depth Completion with Calibrated Backprojection Layers PyTorch implementation of Unsupervised Depth Completion with Calibrated Backprojec

80 Dec 13, 2022
This is the official code for the paper "Ad2Attack: Adaptive Adversarial Attack for Real-Time UAV Tracking".

Ad^2Attack:Adaptive Adversarial Attack on Real-Time UAV Tracking Demo video 📹 Our video on bilibili demonstrates the test results of Ad^2Attack on se

Intelligent Vision for Robotics in Complex Environment 10 Nov 07, 2022
OpenMMLab Computer Vision Foundation

English | 简体中文 Introduction MMCV is a foundational library for computer vision research and supports many research projects as below: MMCV: OpenMMLab

OpenMMLab 4.6k Jan 09, 2023
A system used to detect whether a person is wearing a medical mask or not.

Mask_Detection_System A system used to detect whether a person is wearing a medical mask or not. To open the program, please follow these steps: Make

Mohamed Emad 0 Nov 17, 2022
GAN JAX - A toy project to generate images from GANs with JAX

GAN JAX - A toy project to generate images from GANs with JAX This project aims to bring the power of JAX, a Python framework developped by Google and

Valentin Goldité 14 Nov 29, 2022
Repository for benchmarking graph neural networks

Benchmarking Graph Neural Networks Updates Nov 2, 2020 Project based on DGL 0.4.2. See the relevant dependencies defined in the environment yml files

NTU Graph Deep Learning Lab 2k Jan 03, 2023
Sequence lineage information extracted from RKI sequence data repo

Pango lineage information for German SARS-CoV-2 sequences This repository contains a join of the metadata and pango lineage tables of all German SARS-

Cornelius Roemer 24 Oct 26, 2022
BasicRL: easy and fundamental codes for deep reinforcement learning。It is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up.

BasicRL: easy and fundamental codes for deep reinforcement learning BasicRL is an improvement on rainbow-is-all-you-need and OpenAI Spinning Up. It is

RayYoh 12 Apr 28, 2022
Regression Metrics Calculation Made easy for tensorflow2 and scikit-learn

Regression Metrics Installation To install the package from the PyPi repository you can execute the following command: pip install regressionmetrics I

Ashish Patel 11 Dec 16, 2022
Caffe models in TensorFlow

Caffe to TensorFlow Convert Caffe models to TensorFlow. Usage Run convert.py to convert an existing Caffe model to TensorFlow. Make sure you're using

Saumitro Dasgupta 2.8k Dec 31, 2022
A curated list and survey of awesome Vision Transformers.

English | 简体中文 A curated list and survey of awesome Vision Transformers. You can use mind mapping software to open the mind mapping source file. You c

OpenMMLab 281 Dec 21, 2022
This repository contains the code for the binaural-detection model used in the publication arXiv:2111.04637

This repository contains the code for the binaural-detection model used in the publication arXiv:2111.04637 Dependencies The model depends on the foll

Jörg Encke 2 Oct 14, 2022
Unofficial reimplementation of ECAPA-TDNN for speaker recognition (EER=0.86 for Vox1_O when train only in Vox2)

Introduction This repository contains my unofficial reimplementation of the standard ECAPA-TDNN, which is the speaker recognition in VoxCeleb2 dataset

Tao Ruijie 277 Dec 31, 2022
A system for quickly generating training data with weak supervision

Programmatically Build and Manage Training Data Announcement The Snorkel team is now focusing their efforts on Snorkel Flow, an end-to-end AI applicat

Snorkel Team 5.4k Jan 02, 2023