Kaggle DSTL Satellite Imagery Feature Detection

Overview

DSTL

https://www.kaggle.com/c/dstl-satellite-imagery-feature-detection/

Note: this repo is not supported. License is MIT.

Object types

Note that labels here are 1 less than in submission file:

  • 0: Buildings - large building, residential, non-residential, fuel storage facility, fortified building
  • 1: Misc. Manmade structures
  • 2: Road
  • 3: Track - poor/dirt/cart track, footpath/trail
  • 4: Trees - woodland, hedgerows, groups of trees, standalone trees
  • 5: Crops - contour ploughing/cropland, grain (wheat) crops, row (potatoes, turnips) crops
  • 6: Waterway
  • 7: Standing water
  • 8: Vehicle Large - large vehicle (e.g. lorry, truck, bus), logistics vehicle
  • 9: Vehicle Small - small vehicle (car, van), motorbike

General approach

UNet network with batch-normalization added, training with Adam optimizer with a loss that is a sum of 0.1 cross-entropy and 0.9 dice loss. Input for UNet was a 116 by 116 pixel patch, output was 64 by 64 pixels, so there were 16 additional pixels on each side that just provided context for the prediction. Batch size was 128, learning rate was set to 0.0001 (but loss was multiplied by the batch size). Learning rate was divided by 5 on the 25-th epoch and then again by 5 on the 50-th epoch, most models were trained for 70-100 epochs. Patches that formed a batch were selected completely randomly across all images. During one epoch, network saw patches that covered about one half of the whole training set area. Best results for individual classes were achieved when training on related classes, for example buildings and structures, roads and tracks, two kinds of vehicles.

Augmentations included small rotations for some classes (±10-25 degrees for houses, structures and both vehicle classes), full rotations and vertical/horizontal flips for other classes. Small amount of dropout (0.1) was used in some cases. Alignment between channels was fixed with the help of cv2.findTransformECC, and lower-resolution layers were upscaled to match RGB size. In most cases, 12 channels were used (RGB, P, M), while in some cases just RGB and P or all 20 channels made results slightly better.

Validation

Validation was very hard, especially for both water and both vehicle classes. In most cases, validation was performed on 5 images (6140_3_1, 6110_1_2, 6160_2_1, 6170_0_4, 6100_2_2), while other 20 were used for training. Re-training the model with the same parameters on all 25 images improved LB score.

Some details

  • This setup provides good results for small-scale classes (houses, structures, small vehicles), reasonable results for most other classes and overfits quite badly on waterway.
  • Man-made structures performed significantly better if training polygons were made bigger by 0.5 pixel before producing training masks.
  • For some classes (e.g. vehicles), it helped a bit to make the first downscaling in UNet 4x instead of default 2x, and also made training 1.5x faster.
  • Averaging of predictions (of one model) with small shifts (1/3 of the 64 pixel step) were used for some classes.
  • Predictions on the edges of the input image (closer than 16 pixels to the border) were bad for some classes and were left empty in this case.
  • All models were implemented in pytorch, training for 70 epochs took about 5 hours, submission generation took about 30 minutes without averaging, or about 5 hours with averaging.

Other things tried

A lot of things that either did not bring noticeable improvements, or made things worse:

  • Losses: jaccard instead of dice, trying to predict distance to the border of the objects.
  • Color augmentations.
  • Oversampling of rare classes.
  • Passing lower-resolution channels directly to lower-resolution layers in UNet.
  • Varying UNet filter sizes, activations, number of layers and upscale/downscale steps, using deconvolutions instead of upsampling.
  • Learning rate decay.
  • Models: VGG-like modules for UNet, SegNet, DenseNet

Object types stats

Area by classs:

im_id 0 1 2 3 4 5 6 7 8 9
6010_1_2 0.0% 0.0653% 0.0% 1.3345% 4.5634% 0.0% 0.0% 0.0% 0.0% 0.0%
6010_4_2 0.0% 0.0% 0.0% 1.9498% 12.3410% 0.0% 0.0% 0.0% 0.0% 0.0%
6010_4_4 0.0% 0.0% 0.0% 0.0% 22.8556% 0.0% 0.0% 0.0% 0.0% 0.0%
6040_1_0 0.0% 0.0% 0.0% 1.4446% 8.0062% 0.0% 0.0% 0.0% 0.0% 0.0%
6040_1_3 0.0% 0.0% 0.0% 0.2019% 18.7376% 3.6610% 0.0% 0.0% 0.0% 0.0%
6040_2_2 0.0% 0.0% 0.0% 0.9581% 18.7348% 0.0% 0.0% 0.0% 0.0% 0.0%
6040_4_4 0.0% 0.0% 0.0% 1.8893% 2.9152% 0.0% 0.0% 0.0% 0.0% 0.0%
6060_2_3 0.1389% 0.3037% 0.0% 3.0302% 8.4519% 93.5617% 0.0% 0.0% 0.0% 0.0003%
6070_2_3 1.5524% 0.3077% 0.8135% 0.0% 16.0439% 0.0% 10.6325% 0.0543% 0.0% 0.0058%
6090_2_0 0.0% 0.0343% 0.0% 0.4072% 10.1105% 28.2399% 0.0% 0.3130% 0.0% 0.0008%
6100_1_3 8.7666% 2.7289% 2.2145% 12.2506% 6.2015% 2.6901% 0.0% 0.6839% 0.0110% 0.0459%
6100_2_2 3.1801% 0.8188% 1.1903% 3.7222% 7.6089% 44.3148% 1.8823% 0.0512% 0.0100% 0.0242%
6100_2_3 8.2184% 1.4110% 1.2099% 9.5948% 7.5323% 0.0% 0.0% 0.0603% 0.0148% 0.0661%
6110_1_2 13.1314% 2.8616% 0.4192% 4.1817% 3.3154% 49.7792% 0.0% 0.1527% 0.0% 0.0065%
6110_3_1 4.5495% 1.2561% 3.6302% 2.8221% 5.4133% 57.6089% 0.0% 0.5531% 0.0181% 0.0253%
6110_4_0 2.4051% 0.5732% 1.8409% 2.8067% 5.7379% 80.7666% 0.0% 1.4210% 0.0136% 0.0017%
6120_2_0 1.7980% 0.7257% 0.8505% 4.4026% 5.6352% 79.5910% 0.0% 0.0% 0.0138% 0.0041%
6120_2_2 20.6570% 2.0389% 4.2547% 8.6533% 4.4347% 10.2929% 0.0% 0.2859% 0.0076% 0.1560%
6140_1_2 12.9211% 2.4488% 0.3538% 4.1461% 3.1027% 49.5910% 0.0% 0.1415% 0.0% 0.0086%
6140_3_1 5.2015% 1.4349% 3.4252% 2.5189% 5.8852% 57.3959% 0.0% 0.4664% 0.0042% 0.0358%
6150_2_3 0.0% 0.6055% 0.0% 3.0197% 13.5187% 80.6649% 0.0% 0.0% 0.0% 0.0%
6160_2_1 0.0% 0.0% 0.0% 2.7986% 10.2713% 0.0% 0.0% 0.0% 0.0% 0.0%
6170_0_4 0.0% 0.0016% 0.0% 0.1994% 24.8913% 0.0% 0.0% 0.0152% 0.0% 0.0%
6170_2_4 0.0% 0.0011% 0.0% 2.5070% 7.7844% 49.5326% 0.0% 0.0089% 0.0% 0.0%
6170_4_1 0.0% 0.0% 0.0% 0.1349% 20.2214% 0.0% 0.0% 0.0% 0.0% 0.0%

Making a submission

Train a CNN (choose number of epochs and other hyper-params running without --all):

$ ./train.py checkpoint-folder --all --hps dice_loss=10,n_epochs=70

Make submission file (check hyperparameters doing a submission for the model trained with validation by running with --validation *value* and optionally --valid-polygons):

$ ./make_submission.py checkpoint-folder submission.csv.gz

Finally, use ./merge_submission.py to produce the final submission.

This just gives a general idea, real submissions were generated with different hyperparameters for different classes, and all above commands have more options that are documented in the commands themselves (use --help, check the code if in doubt).

Owner
Konstantin Lopuhin
Konstantin Lopuhin
A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking.

BeatNet A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking. This repository

Mojtaba Heydari 157 Dec 27, 2022
Mesh TensorFlow: Model Parallelism Made Easier

Mesh TensorFlow - Model Parallelism Made Easier Introduction Mesh TensorFlow (mtf) is a language for distributed deep learning, capable of specifying

1.3k Dec 26, 2022
Neural Cellular Automata + CLIP

🧠 Text-2-Cellular Automata Using Neural Cellular Automata + OpenAI CLIP (Work in progress) Examples Text Prompt: Cthulu is watching cthulu_is_watchin

Mainak Deb 21 Dec 19, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network.

UNet-SIDE The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network. For Super Reso

TIANTIAN XU 1 Jan 13, 2022
Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR 2018).

Weakly-Supervised Semantic Segmentation Network with Deep Seeded Region Growing (CVPR2018) By Zilong Huang, Xinggang Wang, Jiasi Wang, Wenyu Liu and J

Zilong Huang 245 Dec 13, 2022
PyTorch implementation of our ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer.

Unsupervised_IEPGAN This is the PyTorch implementation of our ICCV 2021 paper Intrinsic-Extrinsic Preserved GANs for Unsupervised 3D Pose Transfer. Ha

25 Oct 26, 2022
How to Train a GAN? Tips and tricks to make GANs work

(this list is no longer maintained, and I am not sure how relevant it is in 2020) How to Train a GAN? Tips and tricks to make GANs work While research

Soumith Chintala 10.8k Dec 31, 2022
Google AI Open Images - Object Detection Track: Open Solution

Google AI Open Images - Object Detection Track: Open Solution This is an open solution to the Google AI Open Images - Object Detection Track 😃 More c

minerva.ml 46 Jun 22, 2022
A Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images.

Lobe This is a Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images. This component lets you easily use an exported m

Kendell R 4 Feb 28, 2022
Code of TIP2021 Paper《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet and Pytorch versions.

SFace Code of TIP2021 Paper 《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet, PyTorch and Jittor versi

Zhong Yaoyao 47 Nov 25, 2022
Segmentation-Aware Convolutional Networks Using Local Attention Masks

Segmentation-Aware Convolutional Networks Using Local Attention Masks [Project Page] [Paper] Segmentation-aware convolution filters are invariant to b

144 Jun 29, 2022
Joint-task Self-supervised Learning for Temporal Correspondence (NeurIPS 2019)

Joint-task Self-supervised Learning for Temporal Correspondence Project | Paper Overview Joint-task Self-supervised Learning for Temporal Corresponden

Sifei Liu 167 Dec 14, 2022
GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration

GenGNN: A Generic FPGA Framework for Graph Neural Network Acceleration Stefan Abi-Karam*, Yuqi He*, Rishov Sarkar*, Lakshmi Sathidevi, Zihang Qiao, Co

Sharc-Lab 19 Dec 15, 2022
Few-shot Neural Architecture Search

One-shot Neural Architecture Search uses a single supernet to approximate the performance each architecture. However, this performance estimation is super inaccurate because of co-adaption among oper

Yiyang Zhao 38 Oct 18, 2022
Implementation of paper "Self-supervised Learning on Graphs:Deep Insights and New Directions"

SelfTask-GNN A PyTorch implementation of "Self-supervised Learning on Graphs: Deep Insights and New Directions". [paper] In this paper, we first deepe

Wei Jin 85 Oct 13, 2022
DETReg: Unsupervised Pretraining with Region Priors for Object Detection

DETReg: Unsupervised Pretraining with Region Priors for Object Detection Amir Bar, Xin Wang, Vadim Kantorov, Colorado J Reed, Roei Herzig, Gal Chechik

Amir Bar 283 Dec 27, 2022
PyTorch Implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedding (ORAL, MICCAIW 2021)

Small Lesion Segmentation in Brain MRIs with Subpixel Embedding PyTorch implementation of Small Lesion Segmentation in Brain MRIs with Subpixel Embedd

22 Oct 21, 2022
Indonesian Car License Plate Character Recognition using Tensorflow, Keras and OpenCV.

Monopol Indonesian Car License Plate (Indonesia Mobil Nomor Polisi) Character Recognition using Tensorflow, Keras and OpenCV. Background This applicat

Jayaku Briliantio 3 Apr 07, 2022