A lightweight deep network for fast and accurate optical flow estimation.

Overview

FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation

The official PyTorch implementation of FastFlowNet (ICRA 2021).

Authors: Lingtong Kong, Chunhua Shen, Jie Yang

Network Architecture

Dense optical flow estimation plays a key role in many robotic vision tasks. It has been predicted with satisfying accuracy than traditional methods with advent of deep learning. However, current networks often occupy large number of parameters and require heavy computation costs. These drawbacks have hindered applications on power- or memory-constrained mobile devices. To deal with these challenges, in this paper, we dive into designing efficient structure for fast and accurate optical flow prediction. Our proposed FastFlowNet works in the well-known coarse-to-fine manner with following innovations. First, a new head enhanced pooling pyramid (HEPP) feature extractor is employed to intensify high-resolution pyramid feature while reducing parameters. Second, we introduce a novel center dense dilated correlation (CDDC) layer for constructing compact cost volume that can keep large search radius with reduced computation burden. Third, an efficient shuffle block decoder (SBD) is implanted into each pyramid level to acclerate flow estimation with marginal drops in accuracy. The overall architecture of FastFlowNet is shown as below.

NVIDIA Jetson TX2

Optimized by TensorRT, proposed FastFlowNet can approximate real-time inference on the Jetson TX2 development board, which represents the first real-time solution for accurate optical flow on embedded devices. For training, please refer to PWC-Net and IRR-PWC, since we use the same datasets, augmentation methods and loss functions. Currently, only pytorch implementation and pre-trained models are available. A demo video for real-time inference on embedded device is shown below, note that there is time delay between real motion and visualized optical flow.

Optical Flow Performance

Experiments on both synthetic Sintel and real-world KITTI datasets demonstrate the effectiveness of proposed approaches, which consumes only 1/10 computation of comparable networks (PWC-Net and LiteFlowNet) to get 90% of their performance. In particular, FastFlowNet only contains 1.37 M parameters and runs at 90 or 5.7 fps with one desktop NVIDIA GTX 1080 Ti or embedded Jetson TX2 GPU on Sintel resolution images. Comprehensive comparisons among well-known flow architectures are listed in the following table. Times and FLOPs are measured on Sintel resolution images with PyTorch implementations.

Sintel Clean Test (AEPE) KITTI 2015 Test (Fl-all) Params (M) FLOPs (G) Time (ms) 1080Ti Time (ms) TX2
FlowNet2 4.16 11.48% 162.52 24836.4 116 1547
SPyNet 6.64 35.07% 1.20 149.8 50 918
PWC-Net 4.39 9.60% 8.75 90.8 34 485
LiteFlowNet 4.54 9.38% 5.37 163.5 55 907
FastFlowNet 4.89 11.22% 1.37 12.2 11 176

Some visual examples of our FastFlowNet on several image sequences are presented as follows.

Usage

Our experiment environment is with CUDA 9.0, Python 3.6 and PyTorch 0.4.1. First, you should build and install the Correlation module in ./model/correlation_package/ with command below

$ python setup.py build
$ python setup.py install

To benchmark running speed and calculate model parameters, you can run

$ python benchmark.py

A demo for predicting optical flow given two time adjacent images, please run

$ python demo.py

Note that you can change the pre-trained models from different datasets for specific applications. The model ./checkpoints/fastflownet_ft_mix.pth is fine-tuned on mixed Sintel and KITTI, which may obtain better generalization ability.

License and Citation

This software and associated documentation files (the "Software"), and the research paper (FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation) including but not limited to the figures, and tables (the "Paper") are provided for academic research purposes only and without any warranty. Any commercial use requires my consent. When using any parts of the Software or the Paper in your work, please cite the following paper:

@inproceedings{Kong:2021:FastFlowNet, 
 title = {FastFlowNet: A Lightweight Network for Fast Optical Flow Estimation}, 
 author = {Lingtong Kong and Chunhua Shen and Jie Yang}, 
 booktitle = {2021 IEEE International Conference on Robotics and Automation (ICRA)}, 
 year = {2021}
}
Owner
Tone
Computer Vision, Deep Learning
Tone
Fast and customizable reconnaissance workflow tool based on simple YAML based DSL.

Fast and customizable reconnaissance workflow tool based on simple YAML based DSL, with support of notifications and distributed workload of that work

Américo Júnior 3 Mar 11, 2022
Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimization"

Riggable 3D Face Reconstruction via In-Network Optimization Source code for CVPR 2021 paper "Riggable 3D Face Reconstruction via In-Network Optimizati

130 Jan 02, 2023
Real-time 3D multi-person detection made easy with OpenPose and the ZED

OpenPose ZED This sample show how to simply use the ZED with OpenPose, the deep learning framework that detects the skeleton from a single 2D image. T

blanktec 5 Nov 06, 2020
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

287 Dec 21, 2022
AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models

AI-UPV at IberLEF-2021 DETOXIS task: Toxicity Detection in Immigration-Related Web News Comments Using Transformers and Statistical Models Description

Angel de Paula 0 Jun 08, 2022
Simple implementation of OpenAI CLIP model in PyTorch.

It was in January of 2021 that OpenAI announced two new models: DALL-E and CLIP, both multi-modality models connecting texts and images in some way. In this article we are going to implement CLIP mod

Moein Shariatnia 226 Jan 05, 2023
Unofficial Pytorch Implementation of WaveGrad2

WaveGrad 2 — Unofficial PyTorch Implementation WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis Unofficial PyTorch+Lightning Implementati

MINDs Lab 104 Nov 29, 2022
Facial Expression Detection In The Realtime

The human's facial expressions is very important to detect thier emotions and sentiment. It can be very efficient to use to make our computers make interviews. Furthermore, we have robots now can det

Adel El-Nabarawy 4 Mar 01, 2022
Code for ICLR 2020 paper "VL-BERT: Pre-training of Generic Visual-Linguistic Representations".

VL-BERT By Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, Jifeng Dai. This repository is an official implementation of the paper VL-BERT:

Weijie Su 698 Dec 18, 2022
A PyTorch implementation of the paper "Semantic Image Synthesis via Adversarial Learning" in ICCV 2017

Semantic Image Synthesis via Adversarial Learning This is a PyTorch implementation of the paper Semantic Image Synthesis via Adversarial Learning. Req

Seonghyeon Nam 146 Nov 25, 2022
Scikit-event-correlation - Event Correlation and Forecasting over High Dimensional Streaming Sensor Data algorithms

scikit-event-correlation Event Correlation and Changing Detection Algorithm Theo

Intellia ICT 5 Oct 30, 2022
Self-Learning - Books Papers, Courses & more I have to learn soon

Self-Learning This repository is intended to be used for personal use, all rights reserved to respective owners, please cite original authors and ask

Achint Chaudhary 968 Jan 02, 2022
Training Cifar-10 Classifier Using VGG16

opevcvdl-hw3 This project uses pytorch and Qt to achieve the requirements. Version Python 3.6 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.

Kenny Cheng 3 Aug 17, 2022
This is an official implementation for "DeciWatch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation"

DeciWatch: A Simple Baseline for 10× Efficient 2D and 3D Pose Estimation This repo is the official implementation of "DeciWatch: A Simple Baseline for

117 Dec 24, 2022
Code release for DS-NeRF (Depth-supervised Neural Radiance Fields)

Depth-supervised NeRF: Fewer Views and Faster Training for Free Project | Paper | YouTube Pytorch implementation of our method for learning neural rad

524 Jan 08, 2023
Dyalog-apl-docset - Dyalog APL Dash Docset Generator

Dyalog APL Dash Docset Generator o alasa e kili sona kepeken tenpo lili a A Dash

Maciej Goszczycki 1 Jan 10, 2022
This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

ICCV Workshop 2021 VTGAN This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

Sharif Amit Kamran 25 Dec 08, 2022
PyTorch code for: Learning to Generate Grounded Visual Captions without Localization Supervision

Learning to Generate Grounded Visual Captions without Localization Supervision This is the PyTorch implementation of our paper: Learning to Generate G

Chih-Yao Ma 41 Nov 17, 2022
No Code AI/ML platform

NoCodeAIML No Code AI/ML platform - Community Edition Video credits: Uday Kiran Typical No Code AI/ML Platform will have features like drag and drop,

Bhagvan Kommadi 5 Jan 28, 2022
Pytorch implement of 'Unmixing based PAN guided fusion network for hyperspectral imagery'

Pgnet There's a improved version compared with the publication in Tgrs with the modification in the deduction of the PDIN block: https://arxiv.org/abs

5 Jul 01, 2022