Neural Surface Maps

Overview

Neural Surface Maps

Official implementation of Neural Surface Maps - Luca Morreale, Noam Aigerman, Vladimir Kim, Niloy J. Mitra

[Paper] [Project Page]

How-To

Replicating the results is possible following these steps:

  1. Parametrize the surface
  2. Prepare surface sample
  3. Overfit the surface
  4. Neural parametrization of the surface
  5. Optimize surface-to-surface map
  6. Optimize a map between a collection

1. Surface Parametrization

This is a preprocessing step. You can use SLIM[1] from this repo to fulfill this step.

2. Sample preparation

Given a parametrized surface (prev. step), we need to convert it into a sample. First of all, we need to over sample the surface with Meshlab. You can use the midpoint subdivision filter.

Once the super-sampled surface is ready then you can convert it into a sample:

python -m preprocessing.convert_sample surface_slim.obj surface_slim_oversampled.obj output_sample.pth

The file output_sample.pth is the sample ready to be over-fitted.

3. Overfit surface

A surface representation is generated with:

python -m training_surface_map dataset.sample_path=output_sample.pth

This will save a surface map inside outputs/neural_maps folder. The folder name follows this patterns: overfit_[timestamp]. Inside that folder, the map is saved under the sample fodler as pth file.

The overfitted surface can be generated with:

python -m show_surface_map

please, set the path to the pth file just created inside the script.

4. Neural parametrization

Generating a neural parametrization need to run:

python -m training_parametrization_map dataset.sample_path=your_surface_map.pth

Like for the overfitting, this saves the map inside outputs/neural_maps folder. The folder name have the following patterns parametrization_[timestamp].

To display the paramtrization obtained run:

python -m show_parametrization_map

please, set the path to the pth file just created inside the script.

5. Optimize surface-to-surface map

To generating a inter-surface map run:

python -m training_intersurface_map dataset.sample_path_g=your_surface_map_a.pth dataset.sample_path_f=your_surface_map_b.pth

Note, this steps requires two surface maps. A source, sample_path_g, and a target, sample_path_f.

Likewise the overfitting, the map is saved inside outputs/neural_maps. The inter-surface map folder pattern is intersurface_[timestamp]. The pth file is inside the models folder.

To display the inter-surface map run:

python -m show_intersurface_map

remember to set the path of the maps inside the script.

6. Optimize collection map

A collection between a set of surface maps can be optimized with:

python -m training_intersurface_map dataset.sample_path_g=your_surface_map_g.pth dataset.sample_path_f=your_surface_map_f.pth dataset.sample_path_q=your_surface_map_q.pth

Note, this steps requires three surface maps. A source, sample_path_g, and two targets, sample_path_f and sample_path_q.

This will save two maps inside outputs/neural_maps folder. The folder name follows this patterns: collection_[timestamp], under the folder models you can find two *.pth file.

To display the collection map run:

python -m show_collection_map

remember to set the path of maps inside the script.


Dependencies

Dependencies are listed in environment.yml. Using conda, all the packages can be installed with conda env create -f environment.yml.

On top of the packages above, please install also pytorch svd on gpu package.


Data

Any mesh can be used for this process. A data example can be downloaded here.


Citation

@misc{morreale2021neural,
      title={Neural Surface Maps},
      author={Luca Morreale and Noam Aigerman and Vladimir Kim and Niloy J. Mitra},
      year={2021},
      eprint={2103.16942},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

References

[1] Scalable locally injective mappings - Michael Rabinovich et. al. - ACM Transactions on Graphics (TOG) 2017

Owner
Luca Morreale
Luca Morreale
A large-scale database for graph representation learning

A large-scale database for graph representation learning

Scott Freitas 29 Nov 25, 2022
Graph neural network message passing reframed as a Transformer with local attention

Adjacent Attention Network An implementation of a simple transformer that is equivalent to graph neural network where the message passing is done with

Phil Wang 49 Dec 28, 2022
The Adapter-Bot: All-In-One Controllable Conversational Model

The Adapter-Bot: All-In-One Controllable Conversational Model This is the implementation of the paper: The Adapter-Bot: All-In-One Controllable Conver

CAiRE 37 Nov 04, 2022
Racing line optimization algorithm in python that uses Particle Swarm Optimization.

Racing Line Optimization with PSO This repository contains a racing line optimization algorithm in python that uses Particle Swarm Optimization. Requi

Parsa Dahesh 6 Dec 14, 2022
A embed able annotation tool for end to end cross document co-reference

CoRefi CoRefi is an emebedable web component and stand alone suite for exaughstive Within Document and Cross Document Coreference Anntoation. For a de

PythicCoder 39 Dec 12, 2022
CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields

CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields Paper | Supplementary | Video | Poster If you find our code or paper useful, please

26 Nov 29, 2022
Label Mask for Multi-label Classification

LM-MLC 一种基于完型填空的多标签分类算法 1 前言 本文主要介绍本人在全球人工智能技术创新大赛【赛道一】设计的一种基于完型填空(模板)的多标签分类算法:LM-MLC,该算法拟合能力很强能感知标签关联性,在多个数据集上测试表明该算法与主流算法无显著性差异,在该比赛数据集上的dev效果很好,但是由

52 Nov 20, 2022
A large-scale face dataset for face parsing, recognition, generation and editing.

CelebAMask-HQ [Paper] [Demo] CelebAMask-HQ is a large-scale face image dataset that has 30,000 high-resolution face images selected from the CelebA da

switchnorm 1.7k Dec 26, 2022
Code & Models for 3DETR - an End-to-end transformer model for 3D object detection

3DETR: An End-to-End Transformer Model for 3D Object Detection PyTorch implementation and models for 3DETR. 3DETR (3D DEtection TRansformer) is a simp

Facebook Research 487 Dec 31, 2022
Progressive Domain Adaptation for Object Detection

Progressive Domain Adaptation for Object Detection Implementation of our paper Progressive Domain Adaptation for Object Detection, based on pytorch-fa

96 Nov 25, 2022
A Haskell kernel for IPython.

IHaskell You can now try IHaskell directly in your browser at CoCalc or mybinder.org. Alternatively, watch a talk and demo showing off IHaskell featur

Andrew Gibiansky 2.4k Dec 29, 2022
Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transformers to Guarantee TopologyPreservation in Segmentations"

TEDS-Net Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transfo

Madeleine K Wyburd 14 Jan 04, 2023
Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution

Syllabic Quantity Patterns as Rhythmic Features for Latin Authorship Attribution Abstract Within the Latin (and ancient Greek) production, it is well

4 Dec 03, 2022
Implementation of SwinTransformerV2 in TensorFlow.

SwinTransformerV2-TensorFlow A TensorFlow implementation of SwinTransformerV2 by Microsoft Research Asia, based on their official implementation of Sw

Phan Nguyen 2 May 30, 2022
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)

OCTIS : Optimizing and Comparing Topic Models is Simple! OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and compa

MIND 478 Jan 01, 2023
“Robust Lightweight Facial Expression Recognition Network with Label Distribution Training”, AAAI 2021.

EfficientFace Zengqun Zhao, Qingshan Liu, Feng Zhou. "Robust Lightweight Facial Expression Recognition Network with Label Distribution Training". AAAI

Zengqun Zhao 119 Jan 08, 2023
Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters"

Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters" Pipeline of CLIP-Adapter CLIP-Adapter is a drop-in modul

peng gao 157 Dec 26, 2022
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L

120 Dec 28, 2022
A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation

Paper Khoi Nguyen, Sinisa Todorovic "A Weakly Supervised Amodal Segmenter with Boundary Uncertainty Estimation", accepted to ICCV 2021 Our code is mai

Khoi Nguyen 5 Aug 14, 2022
[NeurIPS '21] Adversarial Attacks on Graph Classification via Bayesian Optimisation (GRABNEL)

Adversarial Attacks on Graph Classification via Bayesian Optimisation @ NeurIPS 2021 This repository contains the official implementation of GRABNEL,

Xingchen Wan 12 Dec 23, 2022