A Lucid Framework for Transparent and Interpretable Machine Learning Models.

Overview

https://raw.githubusercontent.com/lucidmode/lucidmode/main/images/lucidmode_logo.png



Documentation Status Version License Version Visits

Currently a Beta-Version


lucidmode is an open-source, low-code and lightweight Python framework for transparent and interpretable machine learning models. It has built in machine learning methods optimized for visual interpretation of some of the most relevant calculations.

Documentation

Installation

  • With package manager (coming soon)

Install by using pip package manager:

pip install lucidmode
  • Cloning repository

Clone entire github project

[email protected]:lucidmode/lucidmode.git

and then install dependencies

pip install -r requirements.txt

Models

Artificial Neural Network

Feedforward Multilayer perceptron with backpropagation.

  • fit: Fit model to data
  • predict: Prediction according to model

Initialization, Activations, Cost functions, regularization, optimization

  • Weights Initialization: With 4 types of criterias (zeros, xavier, common, he)
  • Activation Functions: sigmoid, tanh, ReLU
  • Cost Functions: Sum of Squared Error, Binary Cross-Entropy, Multi-Class Cross-Entropy
  • Regularization: L1, L2, ElasticNet for weights in cost function and in gradient updating
  • Optimization: Weights optimization with Gradient Descent (GD, SGD, Batch) with learning rate
  • Execution: Callback (metric threshold), History (Cost and metrics)
  • Hyperparameter Optimization: Random Grid Search with Memory

Complementary

  • Metrics: Accuracy, Confusion Matrix (Binary and Multiclass), Confusion Tensor (Multiclass OvR)
  • Visualizations: Cost evolution
  • Public Datasets: MNIST, Fashion MNIST
  • Special Datasets: OHLCV + Symbolic Features of Cryptocurrencies (ETH, BTC)

Important Links

Author/Principal Maintainer

Francisco Munnoz (IFFranciscoME) Is an associate professor of financial engineering and financial machine learning ITESO (Western Institute of Technology and Higher Education)

License

GNU General Public License v3.0

Permissions of this strong copyleft license are conditioned on making available complete source code of licensed works and modifications, which include larger works using a licensed work, under the same license. Copyright and license notices must be preserved. Contributors provide an express grant of patent rights.

Contact: For more information in reggards of this repo, please contact [email protected]

You might also like...
Implementations of Machine Learning models, Regularizers, Optimizers and different Cost functions.

Linear Models Implementations of LinearRegression, LassoRegression and RidgeRegression with appropriate Regularizers and Optimizers. Linear Regression

Tangram makes it easy for programmers to train, deploy, and monitor machine learning models.
Tangram makes it easy for programmers to train, deploy, and monitor machine learning models.

Tangram Website | Discord Tangram makes it easy for programmers to train, deploy, and monitor machine learning models. Run tangram train to train a mo

SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker.
SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker.

SageMaker Python SDK SageMaker Python SDK is an open source library for training and deploying machine learning models on Amazon SageMaker. With the S

Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

Model Validation Toolkit is a collection of tools to assist with validating machine learning models prior to deploying them to production and monitoring them after deployment to production.

easyNeuron is a simple way to create powerful machine learning models, analyze  data and research cutting-edge AI.
easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Automated modeling and machine learning framework FEDOT
Automated modeling and machine learning framework FEDOT

This repository contains FEDOT - an open-source framework for automated modeling and machine learning (AutoML). It can build custom modeling pipelines for different real-world processes in an automated way using an evolutionary approach. FEDOT supports classification (binary and multiclass), regression, clustering, and time series prediction tasks.

machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service
machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service

This is a machine learning model deployment project of Iris classification model in a minimal UI using flask web framework and deployed it in Azure cloud using Azure app service. We initially made this project as a requirement for an internship at Indian Servers. We are now making it open to contribution.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

Releases(v0.4-beta1.0)
  • v0.4-beta1.0(Apr 29, 2021)

    Metrics

    • Calculation of several metrics for classification sensitivity (TPR), specificity (TNR), accuracy (acc), likelihood ratio (positive), likelihood ratio (negative), confusion matrix (binary and multiclass) confusion tensor (binary for every class in multi-class)

    Sequential Class

    • Move the cost_f and cost_r parameters to be specified from the formation method, leave the class instantiation with just the model architecture

    • Move the init_weights method to be specified from the formation method

    Execution

    • Create formation method in the Sequential Class, with the following parameters init, cost, metrics, optimizer

    • Store selected metrics in Train and Validation History

    Visualizations

    • Select metrics for verbose output
    Source code(tar.gz)
    Source code(zip)
  • v0.3-beta1.0(Apr 27, 2021)

    Regularization:

    • On weights and biases, location: gradients

      • L1, L2 and ElasticNet
    • On weights and biases, location: cost function

      • L1, L2 and ElasticNet

    Numerical Stability:

    • in functions.py, in cost, added a 1e-25 value to A, to avoid a divide by zero and invalid multiply cases in computations of np.log(A)

    Data Handling:

    • train and validation cost

    Visualization:

    • print: verbose of cost evolution

    Documentation:

    • Improve README
    Source code(tar.gz)
    Source code(zip)
  • v0.2-beta1.0(Apr 27, 2021)

    Files:

    • complete data set: MNIST
    • complete data set: 'fashion-MNIST'

    Tests passed:

    • fashion MNIST
    • previous release tests

    Topology

    • single hidden layer (tested)
    • 1 - 2 hidden layers (tested)
    • different activation functions among hidden layer

    Activation functions:

    • For hidden -> Sigmoid, Tanh, ReLU (tested and not working)
    • For output -> Softmax

    Cost Functions:

    • 'binary-logloss' (Binary-class Cross-Entropy)
    • 'multi-logloss' (Multi-class Cross-Entropy)

    Metrics:

    • Confusion matrix (Multi-class)
    • Accuracy (Multi-class)
    Source code(tar.gz)
    Source code(zip)
  • v0.1-beta1.0(Apr 26, 2021)

    First release!

    Tests passed:

    • Random XOR data classification

    Sequential model:

    • hidden_l: Number of neurons per hidden layer (list of int, with a length of l_hidden)
    • hidden_a: Activation of hidden layers (list of str, with length l_hidden)
    • output_n: Number of neurons in the output layer (1)
    • output_a: Activation of output layer (str)

    Layer transformations:

    • linear

    Activation functions:

    • For hidden -> Sigmoid, Tanh
    • For output -> Sigmoid (Binary)

    Weights Initialization:

    • Xavier normal, Xavier uniform, common uniform, according to [1]

    Training Schemes:

    • Gradient Descent

    Cost Functions:

    • Sum of Squared Error (SSE) or Residual Sum of Squares (RSS)

    Metrics:

    • Accuracy (Binary)
    Source code(tar.gz)
    Source code(zip)
    LucidNet_v0.1-beta1.0.zip(111.97 MB)
Owner
lucidmode
A lucid framework for interpretable machine learning models
lucidmode
Interactive Web App with Streamlit and Scikit-learn that applies different Classification algorithms to popular datasets

Interactive Web App with Streamlit and Scikit-learn that applies different Classification algorithms to popular datasets Datasets Used: Iris dataset,

Samrat Mitra 2 Nov 18, 2021
K-means clustering is a method used for clustering analysis, especially in data mining and statistics.

K Means Algorithm What is K Means This algorithm is an iterative algorithm that partitions the dataset according to their features into K number of pr

1 Nov 01, 2021
Transpile trained scikit-learn estimators to C, Java, JavaScript and others.

sklearn-porter Transpile trained scikit-learn estimators to C, Java, JavaScript and others. It's recommended for limited embedded systems and critical

Darius Morawiec 1.2k Jan 05, 2023
A simple machine learning package to cluster keywords in higher-level groups.

Simple Keyword Clusterer A simple machine learning package to cluster keywords in higher-level groups. Example: "Senior Frontend Engineer" -- "Fronte

Andrea D'Agostino 10 Dec 18, 2022
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 363 Dec 14, 2022
stability-selection - A scikit-learn compatible implementation of stability selection

stability-selection - A scikit-learn compatible implementation of stability selection stability-selection is a Python implementation of the stability

185 Dec 03, 2022
A high performance and generic framework for distributed DNN training

BytePS BytePS is a high performance and general distributed training framework. It supports TensorFlow, Keras, PyTorch, and MXNet, and can run on eith

Bytedance Inc. 3.3k Dec 28, 2022
A simple application that calculates the probability distribution of a normal distribution

probability-density-function General info An application that calculates the probability density and cumulative distribution of a normal distribution

1 Oct 25, 2022
A series of Jupyter notebooks that walk you through the fundamentals of Machine Learning and Deep Learning in Python using Scikit-Learn, Keras and TensorFlow 2.

Machine Learning Notebooks, 3rd edition This project aims at teaching you the fundamentals of Machine Learning in python. It contains the example code

Aurélien Geron 1.6k Jan 05, 2023
Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.

Prophet: Automatic Forecasting Procedure Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends ar

Facebook 15.4k Jan 07, 2023
A repository for collating all the resources such as articles, blogs, papers, and books related to Bayesian Statistics.

A repository for collating all the resources such as articles, blogs, papers, and books related to Bayesian Statistics.

Aayush Malik 80 Dec 12, 2022
This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you ask it.

Crypto-Currency-Predictor This machine-learning algorithm takes in data from the last 60 days and tries to predict tomorrow's price of any crypto you

Hazim Arafa 6 Dec 04, 2022
Mortality risk prediction for COVID-19 patients using XGBoost models

Mortality risk prediction for COVID-19 patients using XGBoost models Using demographic and lab test data received from the HM Hospitales in Spain, I b

1 Jan 19, 2022
Bodywork deploys machine learning projects developed in Python, to Kubernetes.

Bodywork deploys machine learning projects developed in Python, to Kubernetes. It helps you to: serve models as microservices execute batch jobs run r

Bodywork Machine Learning 409 Jan 01, 2023
Machine-Learning with python (jupyter)

Machine-Learning with python (jupyter) 머신러닝 야학 작심 10일과 쥬피터 노트북 기반 데이터 사이언스 시작 들어가기전 https://nbviewer.org/ 페이지를 통해서 쥬피터 노트북 내용을 볼 수 있다. 위 페이지에서 현재 레포 기

HyeonWoo Jeong 1 Jan 23, 2022
In this Repo a simple Sklearn Model will be trained and pushed to MLFlow

SKlearn_to_MLFLow In this Repo a simple Sklearn Model will be trained and pushed to MLFlow Install This Repo is based on poetry python3 -m venv .venv

1 Dec 13, 2021
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

SUN Group @ UMN 28 Aug 03, 2022
SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow

SmartSim makes it easier to use common Machine Learning (ML) libraries like PyTorch and TensorFlow, in High Performance Computing (HPC) simulations and workloads.

Scikit-Garden or skgarden is a garden for Scikit-Learn compatible decision trees and forests.

Scikit-Garden or skgarden (pronounced as skarden) is a garden for Scikit-Learn compatible decision trees and forests.

260 Dec 21, 2022
JMP is a Mixed Precision library for JAX.

Mixed precision training [0] is a technique that mixes the use of full and half precision floating point numbers during training to reduce the memory bandwidth requirements and improve the computatio

DeepMind 108 Dec 31, 2022