Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch

Overview

Perceiver - Pytorch

Implementation of Perceiver, General Perception with Iterative Attention, in Pytorch

Install

$ pip install perceiver-pytorch

Usage

import torch
from perceiver_pytorch import Perceiver

model = Perceiver(
    num_fourier_features = 6,    # number of fourier features, with original value (2 * K + 1)
    depth = 48,                  # depth of net, in paper, they went deep, making up for lack of attention
    num_latents = 6,             # number of latents, or induced set points, or centroids. different papers giving it different names
    cross_dim = 512,             # cross attention dimension
    latent_dim = 512,            # latent dimension
    cross_heads = 1,             # number of heads for cross attention. paper said 1
    latent_heads = 8,            # number of heads for latent self attention, 8
    cross_dim_head = 64,
    latent_dim_head = 64,
    num_classes = 1000,          # output number of classes
    attn_dropout = 0.,
    ff_dropout = 0.,
    weight_tie_layers = False    # whether to weight tie layers (optional, as indicated in the diagram)
)

img = torch.randn(1, 224 * 224) # 1 imagenet image, pixelized

model(img) # (1, 1000)

Citations

@misc{jaegle2021perceiver,
    title   = {Perceiver: General Perception with Iterative Attention},
    author  = {Andrew Jaegle and Felix Gimeno and Andrew Brock and Andrew Zisserman and Oriol Vinyals and Joao Carreira},
    year    = {2021},
    eprint  = {2103.03206},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
Comments
  • Latent averaging to the logits?

    Latent averaging to the logits?

    I read through the paper last night and came away confused about a few things. I looked through your code hoping for some clarity.

    One issue that doesn't seem to be explained in the paper (or I am missing it) is how the authors go from a set of latents to the logits used at the classification head. You implemented this by taking the mean of the latent set:

    https://github.com/lucidrains/perceiver-pytorch/blob/main/perceiver_pytorch/perceiver_pytorch.py#L203

    Is this actually how the authors convert to logits?

    opened by neonbjb 7
  • PerceiverAR?

    PerceiverAR?

    Hey @lucidrains - love this repo, and still trying to wrap my head around the various difference between Perceiver architectures; how hard would it be to extend PerceiverIO to PerceiverAR; what fundamentally needs to change?

    opened by siddk 5
  • Not using the classification head in Perceiver

    Not using the classification head in Perceiver

    Hi @lucidrains, thank you for your great job!

    I'd like to use the Perceiver (not PerceiverIO) without the classification head (average and projection). Do you think we could add an option to avoid using it? I can do a PR if you want.

    Thanks!

    opened by gegallego 4
  • Decoder Attention Module needs a FF network as well in perceiver_io.py script

    Decoder Attention Module needs a FF network as well in perceiver_io.py script

    Hi,

    According to perceiver io paper's (https://arxiv.org/abs/2107.14795) architectural details, they mention that the decoder attention block contains a cross attention block (4), which is already implemented in the perceiver_io.py script (Line 151), followed by a Feedforward network, given by equation (6) in the paper, which is not present in that script. I am not aware of the repercussions of not having FF in the decoder module but it might be a good idea to have it in the implementation. Something like self.decoder_ff = PreNorm(FeedForward(queries_dim)) would do the job. Experimentally, the authors had found that omitting equation (5) is helpful.

    opened by Hritikbansal 4
  • Positional encoding are already part of the input

    Positional encoding are already part of the input

    Hello! First of all, thank you for this implementation.

    My inputs already have the proper positional encoding as part of the channel axis. Would it be possible to add a feature to deactivate the default implementation of the positional encoding?

    Thank you!

    opened by Atlis 4
  • x = self.latents + self.pos_emb

    x = self.latents + self.pos_emb

    self.latents = nn.Parameter(torch.randn(num_latents, latent_dim))
    self.pos_emb = nn.Parameter(torch.randn(num_latents, latent_dim))
    ...
    x = self.latents + self.pos_emb
    

    I'm not very familiar with pytorch, but does this make sense? I mean, what's intended when 2 trainable weight matrices are simply summed and that's that's the only place where both latents and pos_emb appear. It looks like it can be replaced with only one matrix.

    opened by galchinsky 4
  • Fourier encoding is not similar to the paper

    Fourier encoding is not similar to the paper

    First of all, thanks for sharing the code !

    I have a follow up question to #4.

    In the paper, the authors mentioned about [sin(f_kπx_d), cos(f_kπx_d)], where f_k is a bank of frequencies spaced log-linearly between 1 and µ/2. Can you maybe point out how you came to the 1/2**i scaling in the code ?

    https://github.com/lucidrains/perceiver-pytorch/blob/6ae733773d29cb29383f3ac7b45af8cb6bd2c0dc/perceiver_pytorch/perceiver_pytorch.py#L28-L35

    Thanks!

    opened by cheneeheng 4
  • Fourier encoding should be for position coordinates instead of byte array

    Fourier encoding should be for position coordinates instead of byte array

    The fourier_encode function as implemented takes as input a byte array x and directly encodes it with sin/cos before concating with the input.

    As I understand the NeRF position encodings, they encode the x/y/etc. position coordinates, and not a transformation of the data itself. From the Perceiver paper:

    We parametrize the frequency encoding to take the values [sin(fkπxd), cos(fkπxd)], where the frequencies fk is the kth band of a bank of frequencies spaced log-linearly between 1 and µ/2... For example, by allowing the network to resolve the maximum frequency present in an input array, we can encourage it to learn to compare the values of bytes at any positions in the input array. xd is the value of the input position along the dth dimension (e.g. for images d = 2 and for video d = 3). xd takes values in [−1, 1] for each dimension. We concatenate the raw positional value xd to produce the final representation of position. This results in a positional encoding of size d(2K + 1).

    NeRF position encoding examples:

    • https://github.com/bmild/nerf/blob/20a91e764a28816ee2234fcadb73bd59a613a44c/run_nerf_helpers.py#L22
    • https://github.com/ankurhanda/nerf2D
    opened by eridgd 4
  • Positional encoding frequency bands should be linearly spaced

    Positional encoding frequency bands should be linearly spaced

    A small bug, but as alluded to in this comment by @marcdumon, it seems as though the frequency bands are indeed spaced linearly in the official JAX implementation.

    opened by djl11 2
  • Bug in fourier_encode (?)

    Bug in fourier_encode (?)

    Thank you for this great implementation. I'm learning a lot from it!

    I think I found a problem in the fourier_encode method. In this line: https://github.com/lucidrains/perceiver-pytorch/blob/b33aced4e1b266aeb1383e03ab63f0a9951f9126/perceiver_pytorch/perceiver_pytorch.py#L36

    the scales are always the same whatever value of parameter base. Example:

    max_freq = 10, num_bands=6, base = 2
    => scales = [1.0000, 1.3797, 1.9037, 2.6265, 3.6239, 5.0000]
    
    max_freq = 10, num_bands=6, base = 10
    => scales = [1.0000, 1.3797, 1.9037, 2.6265, 3.6239, 5.0000]
    
    opened by marcdumon 2
  • Attention softmax is applied to incorrect dimension?

    Attention softmax is applied to incorrect dimension?

    I am studying multi-head attention. When I was reading through [1], I found that the attenion softmax is applied over the last dimension of the similarity tensor sim:

            q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h = h), (q, k, v))
    
            sim = einsum('b i d, b j d -> b i j', q, k) * self.scale
    
            if exists(mask):
                <removed>
    
            # attention, what we cannot get enough of
            attn = sim.softmax(dim = -1)
    

    If I understand correctly sim has the shape (b*h) n1 n2. The softmax is computed over the last dimension n2. Shouldn't the softmax be applied to matrices with all the similarity values of a single head (i.e. with shape n1, n2)?

    [1] https://github.com/lucidrains/perceiver-pytorch/blob/main/perceiver_pytorch/perceiver_io.py#L97

    opened by breuderink 2
  • Issue defining base in fourier_encode for experimental.py, gated.py, mixed_latents.py

    Issue defining base in fourier_encode for experimental.py, gated.py, mixed_latents.py

    Hey Lucid, love the work, it appears you deprecated base in fourier_encode at https://github.com/lucidrains/perceiver-pytorch/commit/144b0d9716a7212b5fd6d95a2267c4d4a08b56a7

    But experimental.py, gated.py, mixed_latents.py are still trying to define the base within the forward pass. https://github.com/lucidrains/perceiver-pytorch/blob/abbb5d5949d3509c57749bd134f5068f2761aac7/perceiver_pytorch/experimental.py#L122 https://github.com/lucidrains/perceiver-pytorch/blob/2d59df42ebb0b7538af77d584f5ae5b50759618b/perceiver_pytorch/mixed_latents.py#L85 https://github.com/lucidrains/perceiver-pytorch/blob/2d59df42ebb0b7538af77d584f5ae5b50759618b/perceiver_pytorch/gated.py#L103

    Thanks again, keep up the great work.

    opened by TannerLaBorde 0
  • Audio + Text data?

    Audio + Text data?

    Can someone please guide me on how you can process both audio and .txt data through perceiver simultaneously for multimodality learning?

    An example code would be nice.

    Thanks

    opened by Sidz1812 1
  • just a suggestion

    just a suggestion

    Hi I like to start with thanking you for such a great work with a lot of great implementations. I have a small suggestion. I suggest for all your codes/modules try to add if __name__ == "__main__": so that if someone just wants to use one file/module can easily try that without having going through whole implementations. for example I am trying to use the this, in case of having a if __name__ == "__main__": I can easily try to run a random input and see how it will work. This will increase the usability with a huge amount.

    Keep up the great work :)

    opened by seyeeet 4
  • What should I change if I want to use data with input size 720*184

    What should I change if I want to use data with input size 720*184

    thanks for sharing this code, I was wondering what should I change if I want to be able to use data that can be converted into images with an input size of 720*184? thanks in advance

    opened by Oussamab21 0
  • Question regarding queries dimensionality in Perceiver IO

    Question regarding queries dimensionality in Perceiver IO

    Hi @lucidrains,

    I think I may be missing something - why do we define the perceiver IO queries vector to have a batch dimension (i.e. queries = torch.randn(1, 128, 32))? Was this just to make the code work nicely? Shouldnt we be using queries = torch.randn(128, 32) ? I expect to use the same embedding for all of my batch elements, which is IIUC what your code is doing.

    opened by pcicales 3
Releases(0.8.6)
Owner
Phil Wang
Working with Attention. It's all we need.
Phil Wang
Can we visualize a large scientific data set with a surrogate model? We're building a GAN for the Earth's Mantle Convection data set to see if we can!

EarthGAN - Earth Mantle Surrogate Modeling Can a surrogate model of the Earth’s Mantle Convection data set be built such that it can be readily run in

Tim 0 Dec 09, 2021
Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks

Adversarially-Robust-Periphery Code + Data from the paper "Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks" by A

Anne Harrington 2 Feb 07, 2022
ROMP: Monocular, One-stage, Regression of Multiple 3D People, ICCV21

Monocular, One-stage, Regression of Multiple 3D People ROMP, accepted by ICCV 2021, is a concise one-stage network for multi-person 3D mesh recovery f

Yu Sun 937 Jan 04, 2023
Code for "Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks", CVPR 2021

Neural Parts: Learning Expressive 3D Shape Abstractions with Invertible Neural Networks This repository contains the code that accompanies our CVPR 20

Despoina Paschalidou 161 Dec 20, 2022
IhoneyBakFileScan Modify - 批量网站备份文件扫描器,增加文件规则,优化内存占用

ihoneyBakFileScan_Modify 批量网站备份文件泄露扫描工具 2022.2.8 添加、修改内容 增加备份文件fuzz规则 修改备份文件大小判断

VMsec 220 Jan 05, 2023
Multi-Horizon-Forecasting-for-Limit-Order-Books

Multi-Horizon-Forecasting-for-Limit-Order-Books This jupyter notebook is used to demonstrate our work, Multi-Horizon Forecasting for Limit Order Books

Zihao Zhang 116 Dec 23, 2022
[ICML 2021, Long Talk] Delving into Deep Imbalanced Regression

Delving into Deep Imbalanced Regression This repository contains the implementation code for paper: Delving into Deep Imbalanced Regression Yuzhe Yang

Yuzhe Yang 568 Dec 30, 2022
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Benedek Rozemberczki 201 Nov 09, 2022
NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset

NOD (Night Object Detection) Dataset NOD: Taking a Closer Look at Detection under Extreme Low-Light Conditions with Night Object Detection Dataset, BM

Igor Morawski 17 Nov 05, 2022
ncnn is a high-performance neural network inference framework optimized for the mobile platform

ncnn ncnn is a high-performance neural network inference computing framework optimized for mobile platforms. ncnn is deeply considerate about deployme

Tencent 16.2k Jan 05, 2023
Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" (NeurIPS'20)

IGNN Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" [paper] [supp] Prepare datasets 1 Download training dataset

Shangchen Zhou 278 Jan 03, 2023
Technical Analysis Indicators - Pandas TA is an easy to use Python 3 Pandas Extension with 130+ Indicators

Pandas TA - A Technical Analysis Library in Python 3 Pandas Technical Analysis (Pandas TA) is an easy to use library that leverages the Pandas package

Kevin Johnson 3.2k Jan 09, 2023
Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant.

Marvis v1.0 Marvis is Mastouri's Jarvis version of the AI-powered Python personal assistant. About M.A.R.V.I.S. J.A.R.V.I.S. is a fictional character

Reda Mastouri 1 Dec 29, 2021
The project is an official implementation of our paper "3D Human Pose Estimation with Spatial and Temporal Transformers".

3D Human Pose Estimation with Spatial and Temporal Transformers This repo is the official implementation for 3D Human Pose Estimation with Spatial and

Ce Zheng 363 Dec 28, 2022
Learning Versatile Neural Architectures by Propagating Network Codes

Learning Versatile Neural Architectures by Propagating Network Codes Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang,

Mingyu Ding 36 Dec 06, 2022
Prior-Guided Multi-View 3D Head Reconstruction

Prior-Guided Head MVS This repository includes some reconstruction results of our IEEE TMM 2021 paper, Prior-Guided Multi-View 3D Head Reconstruction.

11 Aug 17, 2022
Sequential Model-based Algorithm Configuration

SMAC v3 Project Copyright (C) 2016-2018 AutoML Group Attention: This package is a reimplementation of the original SMAC tool (see reference below). Ho

AutoML-Freiburg-Hannover 778 Jan 05, 2023
App customer segmentation cohort rfm clustering

CUSTOMER SEGMENTATION COHORT RFM CLUSTERING TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU Nên chuyển qua theme màu dark thì sẽ nhìn đẹp hơn https://customer-segmentat

hieulmsc 3 Dec 18, 2021
Extracting and filtering paraphrases by bridging natural language inference and paraphrasing

nli2paraphrases Source code repository accompanying the preprint Extracting and filtering paraphrases by bridging natural language inference and parap

Matej Klemen 1 Mar 09, 2022