Implementation of ProteinBERT in Pytorch

Overview

ProteinBERT - Pytorch (wip)

Implementation of ProteinBERT in Pytorch.

Original Repository

Install

$ pip install protein-bert-pytorch

Usage

import torch
from protein_bert_pytorch import ProteinBERT

model = ProteinBERT(
    num_tokens = 21,
    num_annotation = 8943,
    dim = 512,
    dim_global = 256,
    depth = 6,
    narrow_conv_kernel = 9,
    wide_conv_kernel = 9,
    wide_conv_dilation = 5,
    attn_heads = 8,
    attn_dim_head = 64
)

seq = torch.randint(0, 21, (2, 2048))
mask = torch.ones(2, 2048).bool()
annotation = torch.randint(0, 1, (2, 8943)).float()

seq_logits, annotation_logits = model(seq, annotation, mask = mask) # (2, 2048, 21), (2, 8943)

Citations

@article {Brandes2021.05.24.445464,
    author      = {Brandes, Nadav and Ofer, Dan and Peleg, Yam and Rappoport, Nadav and Linial, Michal},
    title       = {ProteinBERT: A universal deep-learning model of protein sequence and function},
    year        = {2021},
    doi         = {10.1101/2021.05.24.445464},
    publisher   = {Cold Spring Harbor Laboratory},
    URL         = {https://www.biorxiv.org/content/early/2021/05/25/2021.05.24.445464},
    eprint      = {https://www.biorxiv.org/content/early/2021/05/25/2021.05.24.445464.full.pdf},
    journal     = {bioRxiv}
}
You might also like...
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intention of Apex is to make up-to-date utilities available to users as quickly as possible.

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

A bunch of random PyTorch models using PyTorch's C++ frontend
A bunch of random PyTorch models using PyTorch's C++ frontend

PyTorch Deep Learning Models using the C++ frontend Gettting started Clone the repo 1. https://github.com/mrdvince/pytorchcpp 2. cd fashionmnist or

PyTorch Autoencoders - Implementing a Variational Autoencoder (VAE) Series in Pytorch.

PyTorch Autoencoders Implementing a Variational Autoencoder (VAE) Series in Pytorch. Inspired by this repository Model List check model paper conferen

PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

Comments
  • bugFix: x and y not on the same device when Learner is trained on GPU

    bugFix: x and y not on the same device when Learner is trained on GPU

    When

    seq        = torch.randint(0, 21, (2, 2048)).cuda()
    annotation = torch.randint(0, 1, (2, 8943)).float().cuda()
    mask       = torch.ones(2, 2048).bool().cuda()
    
    learner.cuda()
    
    loss = learner(seq, annotation, mask = mask) # (2, 2048, 21), (2, 8943)
    
    

    OUTPUT

    ---------------------------------------------------------------------------
    RuntimeError                              Traceback (most recent call last)
    <ipython-input-2-60892e498570> in <module>
          4 learner.cuda()
          5 
    ----> 6 loss = learner(seq, annotation, mask = mask) # (2, 2048, 21), (2, 8943)
    
    ~/data/.conda/envs/torch/lib/python3.8/site-packages/torch/nn/modules/module.py in _call_impl(self, *input, **kwargs)
        887             result = self._slow_forward(*input, **kwargs)
        888         else:
    --> 889             result = self.forward(*input, **kwargs)
        890         for hook in itertools.chain(
        891                 _global_forward_hooks.values(),
    
    /mnt/5280b/wwang/proteinbert/protein_bert_pytorch.py in forward(self, seq, annotation, mask)
        365 
        366         for token_id in self.exclude_token_ids:
    --> 367             random_replace_token_prob_mask = random_replace_token_prob_mask & (random_tokens != token_id)  # make sure you never substitute a token with an excluded token type (pad, start, end)
        368 
        369         # noise sequence
    
    RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!
    
    opened by wilmerwang 0
  • How to use this bert version to use the pretrianed model?

    How to use this bert version to use the pretrianed model?

    Hi guys, thanks for great work. I'm trying to use this pytorch version protein-bert to use the pre-trained model 'ftp://ftp.cs.huji.ac.il/users/nadavb/protein_bert/epoch_92400_sample_23500000.pkl', but have no clues at all. Could you please give some suggestions? Thank you so much!

    opened by Y-H-Joe 1
Owner
Phil Wang
Working with Attention
Phil Wang
Repo for "Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions" https://arxiv.org/abs/2201.12296

Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions This repo contains the dataset and code for the paper Benchmarking Ro

Jiachen Sun 168 Dec 29, 2022
Pre-Trained Image Processing Transformer (IPT)

Pre-Trained Image Processing Transformer (IPT) By Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Cha

HUAWEI Noah's Ark Lab 332 Dec 18, 2022
Voice control for Garry's Mod

WIP: Talonvoice GMod integrations Very work in progress voice control demo for Garry's Mod. HOWTO Install https://talonvoice.com/ Press https://i.imgu

Meta Construct 5 Nov 15, 2022
Code for the submitted paper Surrogate-based cross-correlation for particle image velocimetry

Surrogate-based cross-correlation (SBCC) This repository contains code for the submitted paper Surrogate-based cross-correlation for particle image ve

5 Jun 30, 2022
AdaFocus (ICCV 2021) Adaptive Focus for Efficient Video Recognition

AdaFocus (ICCV 2021) This repo contains the official code and pre-trained models for AdaFocus. Adaptive Focus for Efficient Video Recognition Referenc

Rainforest Wang 115 Dec 21, 2022
Implementation of the Chamfer Distance as a module for pyTorch

Chamfer Distance for pyTorch This is an implementation of the Chamfer Distance as a module for pyTorch. It is written as a custom C++/CUDA extension.

Christian Diller 205 Jan 05, 2023
Highly comparative time-series analysis

〰️ hctsa 〰️ : highly comparative time-series analysis hctsa is a software package for running highly comparative time-series analysis using Matlab (fu

Ben Fulcher 569 Dec 21, 2022
Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for prediction.

Predicitng_viability Using Streamlit to host a multi-page tool with model specs and classification metrics, while also accepting user input values for

Gopalika Sharma 1 Nov 08, 2021
基于Paddle框架的fcanet复现

fcanet-Paddle 基于Paddle框架的fcanet复现 fcanet 本项目基于paddlepaddle框架复现fcanet,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: frazerlin-fcanet 数据准备 本项目已挂

QuanHao Guo 7 Mar 07, 2022
Automatic Differentiation Multipole Moment Molecular Forcefield

Automatic Differentiation Multipole Moment Molecular Forcefield Performance notes On a single gpu, using waterbox_31ang.pdb example from MPIDplugin wh

4 Jan 07, 2022
Trainable Bilateral Filter Layer (PyTorch)

Trainable Bilateral Filter Layer (PyTorch) This repository contains our GPU-accelerated trainable bilateral filter layer (three spatial and one range

FabianWagner 26 Dec 25, 2022
Opinionated code formatter, just like Python's black code formatter but for Beancount

beancount-black Opinionated code formatter, just like Python's black code formatter but for Beancount Try it out online here Features MIT licensed - b

Launch Platform 16 Oct 11, 2022
Implementation of "Semi-supervised Domain Adaptive Structure Learning"

Semi-supervised Domain Adaptive Structure Learning - ASDA This repo contains the source code and dataset for our ASDA paper. Illustration of the propo

3 Dec 13, 2021
OpenPose: Real-time multi-person keypoint detection library for body, face, hands, and foot estimation

Build Type Linux MacOS Windows Build Status OpenPose has represented the first real-time multi-person system to jointly detect human body, hand, facia

25.7k Jan 09, 2023
Codes for paper "Towards Diverse Paragraph Captioning for Untrimmed Videos". CVPR 2021

Towards Diverse Paragraph Captioning for Untrimmed Videos This repository contains PyTorch implementation of our paper Towards Diverse Paragraph Capti

Yuqing Song 61 Oct 11, 2022
Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm

DeCLIP Supervision Exists Everywhere: A Data Efficient Contrastive Language-Image Pre-training Paradigm. Our paper is available in arxiv Updates ** Ou

Sense-GVT 470 Dec 30, 2022
Resources complimenting the Machine Learning Course led in the Faculty of mathematics and informatics part of Sofia University.

Machine Learning and Data Mining, Summer 2021-2022 How to learn data science and machine learning? Programming. Learn Python. Basic Statistics. Take a

Simeon Hristov 8 Oct 04, 2022
Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts

Face mask detection Face Mask Detection System built with OpenCV, TensorFlow using Computer Vision concepts in order to detect face masks in static im

Vaibhav Shukla 1 Oct 27, 2021
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.

Towhee is a flexible machine learning framework currently focused on computing deep learning embeddings over unstructured data.

1.7k Jan 08, 2023