Vector Quantization, in Pytorch

Overview

Vector Quantization - Pytorch

A vector quantization library originally transcribed from Deepmind's tensorflow implementation, made conveniently into a package. It uses exponential moving averages to update the dictionary.

VQ has been successfully used by Deepmind and OpenAI for high quality generation of images (VQ-VAE-2) and music (Jukebox).

Install

$ pip install vector-quantize-pytorch

Usage

import torch
from vector_quantize_pytorch import VectorQuantize

vq = VectorQuantize(
    dim = 256,
    codebook_size = 512,     # codebook size
    decay = 0.8,             # the exponential moving average decay, lower means the dictionary will change faster
    commitment = 1.          # the weight on the commitment loss
)

x = torch.randn(1, 1024, 256)
quantized, indices, commit_loss = vq(x) # (1, 1024, 256), (1, 1024), (1)

Variants

This paper proposes to use multiple vector quantizers to recursively quantize the residuals of the waveform. You can use this with the ResidualVQ class and one extra initialization parameter.

import torch
from vector_quantize_pytorch import ResidualVQ

residual_vq = ResidualVQ(
    dim = 256,
    num_quantizers = 8,      # specify number of quantizers
    codebook_size = 1024,    # codebook size
)

x = torch.randn(1, 1024, 256)
quantized, indices, commit_loss = residual_vq(x)

# (1, 1024, 256), (8, 1, 1024), (8, 1)
# (batch, seq, dim), (quantizer, batch, seq), (quantizer, batch)

Initialization

The SoundStream paper proposes that the codebook should be initialized by the kmeans centroids of the first batch. You can easily turn on this feature with one flag kmeans_init = True, for either VectorQuantize or ResidualVQ class

import torch
from vector_quantize_pytorch import ResidualVQ

residual_vq = ResidualVQ(
    dim = 256,
    codebook_size = 256,
    num_quantizers = 4,
    kmeans_init = True,   # set to True
    kmeans_iters = 10     # number of kmeans iterations to calculate the centroids for the codebook on init
)

x = torch.randn(1, 1024, 256)
quantized, indices, commit_loss = residual_vq(x)

Increasing codebook usage

This repository will contain a few techniques from various papers to combat "dead" codebook entries, which is a common problem when using vector quantizers.

Lower codebook dimension

The Improved VQGAN paper proposes to have the codebook kept in a lower dimension. The encoder values are projected down before being projected back to high dimensional after quantization. You can set this with the codebook_dim hyperparameter.

import torch
from vector_quantize_pytorch import VectorQuantize

vq = VectorQuantize(
    dim = 256,
    codebook_size = 256,
    codebook_dim = 16      # paper proposes setting this to 32 or as low as 8 to increase codebook usage
)

x = torch.randn(1, 1024, 256)
quantized, indices, commit_loss = vq(x)

Cosine similarity

The Improved VQGAN paper also proposes to l2 normalize the codes and the encoded vectors, which boils down to using cosine similarity for the distance. They claim enforcing the vectors on a sphere leads to improvements in code usage and downstream reconstruction. You can turn this on by setting use_cosine_sim = True

import torch
from vector_quantize_pytorch import VectorQuantize

vq = VectorQuantize(
    dim = 256,
    codebook_size = 256,
    use_cosine_sim = True   # set this to True
)

x = torch.randn(1, 1024, 256)
quantized, indices, commit_loss = vq(x)

Expiring stale codes

Finally, the SoundStream paper has a scheme where they replace codes that have hits below a certain threshold with randomly selected vector from the current batch. You can set this threshold with threshold_ema_dead_code keyword.

import torch
from vector_quantize_pytorch import VectorQuantize

vq = VectorQuantize(
    dim = 256,
    codebook_size = 512,
    threshold_ema_dead_code = 2  # should actively replace any codes that have an exponential moving average cluster size less than 2
)

x = torch.randn(1, 1024, 256)
quantized, indices, commit_loss = vq(x)

Citations

@misc{oord2018neural,
    title   = {Neural Discrete Representation Learning},
    author  = {Aaron van den Oord and Oriol Vinyals and Koray Kavukcuoglu},
    year    = {2018},
    eprint  = {1711.00937},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
@misc{zeghidour2021soundstream,
    title   = {SoundStream: An End-to-End Neural Audio Codec},
    author  = {Neil Zeghidour and Alejandro Luebs and Ahmed Omran and Jan Skoglund and Marco Tagliasacchi},
    year    = {2021},
    eprint  = {2107.03312},
    archivePrefix = {arXiv},
    primaryClass = {cs.SD}
}
@inproceedings{anonymous2022vectorquantized,
    title   = {Vector-quantized Image Modeling with Improved {VQGAN}},
    author  = {Anonymous},
    booktitle = {Submitted to The Tenth International Conference on Learning Representations },
    year    = {2022},
    url     = {https://openreview.net/forum?id=pfNyExj7z2},
    note    = {under review}
}
Comments
  • Quantizers are not DDP/AMP compliant

    Quantizers are not DDP/AMP compliant

    Hi Lucidrains,

    Thanks for the amazing work you do by implementing all those papers!

    Is there a plan to make the Quantizer be compliant with:

    • DDP - They need an all gather before calculating anything so the updates are exactly the same across all ranks
    • AMP - In my experience, if AMP touches upon the quantizers it screws up the gradient magnitudes making it NaN/Overflow

    If you want I can have a go at it.

    opened by danieltudosiu 7
  • Commitment Loss Problems

    Commitment Loss Problems

    Hello,

    First of all, thank you so much for this powerful implementation.

    I have been researching to train some VQ-VAE to generate faces from FFHQ 128x128 and I always have the same problem if I use the commitment loss (0.25) and the gamma (0.99) like in the original paper, the commitment loss seems to grow infinitely. I know you said that it is an auxiliary loss and that is not that important but is this normal behavior? If not, how can I avoid for that to happen in the case I wanted to use this loss?

    Thank you so much in advance!

    opened by pedrocg42 6
  • fix dimensions: the codebook must look at data by taking each time fr…

    fix dimensions: the codebook must look at data by taking each time fr…

    …ame individually. In SoundStream article: "This vector quantizer learns a codebook of N vectors to encode each D-dimensional frame of enc(x)."

    opened by wesbz 5
  • kmeans and ddp hangs

    kmeans and ddp hangs

    kmeans and ddp hangs for me. ddp is initialized by pytorch lightning in my case. I have several questions:

    In https://github.com/lucidrains/vector-quantize-pytorch/blob/master/vector_quantize_pytorch/vector_quantize_pytorch.py#L98

    all_num_samples = all_gather_sizes(local_samples, dim = 0) should it be dim = 1 (as dim 0 is the codebook dimension)?

    Then in https://github.com/lucidrains/vector-quantize-pytorch/blob/master/vector_quantize_pytorch/vector_quantize_pytorch.py#L93 it just hangs for me. I am not totally sure, but I believe distributed.broadcast in

    https://github.com/lucidrains/vector-quantize-pytorch/blob/master/vector_quantize_pytorch/vector_quantize_pytorch.py#L90

    is called with incompatible shapes. See https://pytorch.org/docs/stable/distributed.html#torch.distributed.broadcast

    tensor must have the same number of elements in all processes participating in the collective.

    opened by tasptz 4
  • Cannot Converge with L2 Loss

    Cannot Converge with L2 Loss

    I am trying to quantize the latent vector. To be specific, I use a Encoder to get the latent representation z of the input. Then I try to quantize z, then send z into Decoder.

    However, during my experiment, I found the reconstruction loss cannot decrease with L2 loss, namely, the EuclideanCodebook. The model can converge with cosine similarity. Have any idea about this phenomenon?

    I think cosine similarity only considers the direction of the vector, instead of the scale of the vector. I still want to use EuclideanCodebook.

    opened by kingnobro 3
  • Error when using gloo as DDP backend

    Error when using gloo as DDP backend

    Hello! Thank you for your great work on implementing VQ layer. When I use the VQ layer in DDP mode and use gloo as the backend as suggested in README, I got the following error: terminate called after throwing an instance of 'gloo::EnforceNotMet' what(): [enforce fail at ../third_party/gloo/gloo/transport/tcp/pair.cc:510] op.preamble.length <= op.nbytes. 8773632 vs 8386560

    Do you have any ideas on how to solve this problem?
    I also tried to use nccl as the backend, however the program only hangs forever...

    opened by Saltychtao 3
  • codebook initialization

    codebook initialization

    Hi, Thank you for this great work. It's quite useful!

    I have been having problems with index collapse and I'm not sure where it's coming from. But upon digging into the code, it seems that when we're not using k-means to initialize the codebook vectors, randn (normal distribution) is used to initialize them. The vqvae paper specifically uses uniform distribution for initialization, which allows the authors to ignore KL divergence when training.

    This is from the vqvae paper: "Since we assume a uniform prior for z, the KL term that usually appears in the ELBO is constant w.r.t. the encoder parameters and can thus be ignored for training."

    Is there any reason why you changed to Normal distribution here?

    Thanks!

    opened by ramyamounir 3
  • possible papers (and code) of interest

    possible papers (and code) of interest

    Have you had a look at bitsandbytes?

    https://github.com/TimDettmers/bitsandbytes

    https://arxiv.org/abs/2208.07339

    https://timdettmers.com/2022/08/17/llm-int8-and-emergent-features/

    Also this paper on tradeoffs for various 8 bit quantization formats,

    https://arxiv.org/pdf/2206.02915v1.pdf

    opened by Thomas-MMJ 2
  • RQ-VAE: How can I get a list of all learned codebook vectors (as indexed in the

    RQ-VAE: How can I get a list of all learned codebook vectors (as indexed in the "indices")?

    Hi Lucid, i am working on quantizing CLIP image embeddings with your RQ-VAE. It works pretty well.

    Next I want to take all learned codebook vectors and add them to the vocab of a GPT (as frozen token embeddings).

    The idea is to train a GPT with CLIP image embeddings in between texts, e.g. IMAGE-CAPTION or TEXT-IMAGE-TEXT-IMAGE- ... Flamingo-style).

    If this works, then GPT could maybe also learn to generate quantized CLIP IM embeddings token by token --> and then e.g. show images through a.) retrieval or b.) a DALLE 2 decoder :)

    ... So my question is: Once the RQ-VAE is trained and i can get the quantized reconstructions and indices - How can I get a list or tensor of the actual codebook? (all possible vectors from the rq-vocab) :)

    opened by christophschuhmann 2
  • Expire codes heuristic is replacing inputs

    Expire codes heuristic is replacing inputs

    Thanks for the implementation!

    One question, should this

    https://github.com/lucidrains/vector-quantize-pytorch/blob/ebce893fff695845f7fe0f04d1400d2c29b94f98/vector_quantize_pytorch/vector_quantize_pytorch.py#L177

    be actually self.expire_codes_(quantize)?

    opened by kashif 2
  • orthogonal regularization loss useless?

    orthogonal regularization loss useless?

    because the codebooks are not registered as trainable parameters, and the orthogonal loss is only a function of the codebooks, is the orthogonal loss entirely useless?

    opened by GallagherCommaJack 2
  • EMA update on CosineCodebook

    EMA update on CosineCodebook

    The original VIT-VQGAN paper does not seem to use EMA update for codebook learning since their codebook is unit-normalized vectors.

    Particularly, to my understanding, EMA update does not quite make sense when the encoder outputs and codebook vectors are unit-normalized ones.

    What's your take on this? Should we NOT use EMA update with CosineCodebook?

    opened by le4m 3
  • Loss and Backprop Details

    Loss and Backprop Details

    Hi,

    During training the vqvae backprops on multiple losses. While inputting feature maps to the model, we are given a loss, shoud I manually backpropagate and update weights through (the good ol' loss.backward() and optimizer.step()) this or is it handled implicitly?

    opened by Malik7115 3
  • Missing parameter of beta

    Missing parameter of beta

    Hi, in the original VQVAE paper, the commit_loss is defined as

    (quantize.detach()-x) ** 2 + beta * (quantize - x.detach() ** 2)
    

    where the beta is usually to be 0.25. But the commit_loss is defined as the following in your implementation:

    F.mse_loss(quantize.detach(), x)
    

    So I wonder if the parameter beta is set to be 1 by default or if the second term is missing? Thank you very much.

    opened by Corleone-Huang 1
  • No way of training the codebook

    No way of training the codebook

    Hi! Could you please explain how the codebook vectors are updated if the codebook vectors are not required to be orthogonal?

    1. embed tensors in both Euclidean and CosineSim codebooks are registered as buffers, so they can't be updated at all
    2. There is no loss on the codebook vectors that moves them closer to the input

    Am I missing something? It seems that right now there is no way of updating the codebook vectors without the orthogonal loss.

    opened by RafailFridman 5
  • Plugging vector-quantize-pytorch into taming-transformers

    Plugging vector-quantize-pytorch into taming-transformers

    Hi,

    I noticed your architecture could be plugged within the pipeline from https://github.com/CompVis/taming-transformers. I have proposed a code here (https://github.com/tanouch/taming-transformers) doing that. It enables to properly compare the different features proposed in your repo (Lower codebook dimension, Cosine similarity, Orthogonal regularization loss, etc) with the original formulation.

    The code from this repo can be seen in both files

    • taming-transformers/taming/models/vqgan.py
    • taming-transformers/taming/modules/vqvae/quantize.py

    As you can see, it is easy to launch a large scale training with your proposed architecture.

    I am not sure this issue belongs here or in the taming-transformers repo. However, I thought you might be interested. Thanks again for your work and these open-sourced repositeries !

    opened by tanouch 2
Releases(0.10.14)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
Codes to calculate solar-sensor zenith and azimuth angles directly from hyperspectral images collected by UAV. Works only for UAVs that have high resolution GNSS/IMU unit.

UAV Solar-Sensor Angle Calculation Table of Contents About The Project Built With Getting Started Prerequisites Installation Datasets Contributing Lic

Sourav Bhadra 1 Jan 15, 2022
FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery (TGRS)

FactSeg: Foreground Activation Driven Small Object Semantic Segmentation in Large-Scale Remote Sensing Imagery by Ailong Ma, Junjue Wang*, Yanfei Zhon

Kingdrone 43 Jan 05, 2023
Fast SHAP value computation for interpreting tree-based models

FastTreeSHAP FastTreeSHAP package is built based on the paper Fast TreeSHAP: Accelerating SHAP Value Computation for Trees published in NeurIPS 2021 X

LinkedIn 369 Jan 04, 2023
This is just a funny project that we want to see AutoEncoder (AE) can actually work to enhance the features we want

Funny_muscle_enhancer :) 1.Discription: This is just a funny project that we want to see AutoEncoder (AE) can actually work on the some features. We w

Jing-Yao Chen (Jacob) 8 Oct 01, 2022
KDD CUP 2020 Automatic Graph Representation Learning: 1st Place Solution

KDD CUP 2020: AutoGraph Team: aister Members: Jianqiang Huang, Xingyuan Tang, Mingjian Chen, Jin Xu, Bohang Zheng, Yi Qi, Ke Hu, Jun Lei Team Introduc

96 May 30, 2022
Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network

ild-cnn This is supplementary material for the manuscript: "Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neur

22 Nov 05, 2022
Official code of paper "PGT: A Progressive Method for Training Models on Long Videos" on CVPR2021

PGT Code for paper PGT: A Progressive Method for Training Models on Long Videos. Install Run pip install -r requirements.txt. Run python setup.py buil

Bo Pang 27 Mar 30, 2022
Learning Saliency Propagation for Semi-supervised Instance Segmentation

Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of

Berkeley DeepDrive 68 Oct 18, 2022
TensorFlow 2 implementation of the Yahoo Open-NSFW model

TensorFlow 2 implementation of the Yahoo Open-NSFW model

Bosco Yung 101 Jan 01, 2023
Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving

SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds for Autonomous Driving Abstract In this paper, we introduce SalsaNext f

308 Jan 04, 2023
Apply a perspective transformation to a raster image inside Inkscape (no need to use an external software such as GIMP or Krita).

Raster Perspective Apply a perspective transformation to bitmap image using the selected path as envelope, without the need to use an external softwar

s.ouchene 19 Dec 22, 2022
Code for Talk-to-Edit (ICCV2021). Paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog.

Talk-to-Edit (ICCV2021) This repository contains the implementation of the following paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog Yumin

Yuming Jiang 221 Jan 07, 2023
A minimal implementation of face-detection models using flask, gunicorn, nginx, docker, and docker-compose

Face-Detection-flask-gunicorn-nginx-docker This is a simple implementation of dockerized face-detection restful-API implemented with flask, Nginx, and

Pooya-Mohammadi 30 Dec 17, 2022
PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

Amin Rezaei 157 Dec 11, 2022
This is an official implementation of "Polarized Self-Attention: Towards High-quality Pixel-wise Regression"

Polarized Self-Attention: Towards High-quality Pixel-wise Regression This is an official implementation of: Huajun Liu, Fuqiang Liu, Xinyi Fan and Don

DeLightCMU 212 Jan 08, 2023
The official PyTorch code for 'DER: Dynamically Expandable Representation for Class Incremental Learning' accepted by CVPR2021

DER.ClassIL.Pytorch This repo is the official implementation of DER: Dynamically Expandable Representation for Class Incremental Learning (CVPR 2021)

rhyssiyan 108 Jan 01, 2023
Python version of the amazing Reaction Mechanism Generator (RMG).

Reaction Mechanism Generator (RMG) Description This repository contains the Python version of Reaction Mechanism Generator (RMG), a tool for automatic

Reaction Mechanism Generator 284 Dec 27, 2022
Deep Learning for Time Series Forecasting.

nixtlats:Deep Learning for Time Series Forecasting [nikstla] (noun, nahuatl) Period of time. State-of-the-art time series forecasting for pytorch. Nix

Nixtla 5 Dec 06, 2022
Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite.

tflite2tensorflow Generate saved_model, tfjs, tf-trt, EdgeTPU, CoreML, quantized tflite and .pb from .tflite. 1. Supported Layers No. TFLite Layer TF

Katsuya Hyodo 214 Dec 29, 2022