MILK: Machine Learning Toolkit

Related tags

Deep Learningmilk
Overview

MILK: MACHINE LEARNING TOOLKIT

Machine Learning in Python

Milk is a machine learning toolkit in Python.

Its focus is on supervised classification with several classifiers available: SVMs (based on libsvm), k-NN, random forests, decision trees. It also performs feature selection. These classifiers can be combined in many ways to form different classification systems.

For unsupervised learning, milk supports k-means clustering and affinity propagation.

Milk is flexible about its inputs. It optimised for numpy arrays, but can often handle anything (for example, for SVMs, you can use any dataype and any kernel and it does the right thing).

There is a strong emphasis on speed and low memory usage. Therefore, most of the performance sensitive code is in C++. This is behind Python-based interfaces for convenience.

To learn more, check the docs at http://packages.python.org/milk/ or the code demos included with the source at milk/demos/.

Examples

Here is how to test how well you can classify some features,labels data, measured by cross-validation:

import numpy as np
import milk
features = np.random.rand(100,10) # 2d array of features: 100 examples of 10 features each
labels = np.zeros(100)
features[50:] += .5
labels[50:] = 1
confusion_matrix, names = milk.nfoldcrossvalidation(features, labels)
print 'Accuracy:', confusion_matrix.trace()/float(confusion_matrix.sum())

If want to use a classifier, you instanciate a learner object and call its train() method:

import numpy as np
import milk
features = np.random.rand(100,10)
labels = np.zeros(100)
features[50:] += .5
labels[50:] = 1
learner = milk.defaultclassifier()
model = learner.train(features, labels)

# Now you can use the model on new examples:
example = np.random.rand(10)
print model.apply(example)
example2 = np.random.rand(10)
example2 += .5
print model.apply(example2)

There are several classification methods in the package, but they all use the same interface: train() returns a model object, which has an apply() method to execute on new instances.

Details

License: MIT

Author: Luis Pedro Coelho (with code from LibSVM and scikits.learn)

API Documentation: http://packages.python.org/milk/

Mailing List: http://groups.google.com/group/milk-users

Features

  • SVMs. Using the libsvm solver with a pythonesque wrapper around it.
  • LASSO
  • K-means using as little memory as possible. It can cluster millions of instances efficiently.
  • Random forests
  • Self organising maps
  • Stepwise Discriminant Analysis for feature selection.
  • Non-negative matrix factorisation
  • Affinity propagation

Recent History

The ChangeLog file contains a more complete history.

New in 0.6.1 (11 May 2015)

  • Fixed source distribution

New in 0.6 (27 Apr 2015)

  • Update for Python 3

New in 0.5.3 (19 Jun 2013)

  • Fix MDS for non-array inputs
  • Fix MDS bug
  • Add return_* arguments to kmeans
  • Extend zscore() to work on non-ndarrays
  • Add frac_precluster_learner
  • Work with older C++ compilers

New in 0.5.2 (7 Mar 2013)

  • Fix distribution of Eigen with source

New in 0.5.1 (11 Jan 2013)

  • Add subspace projection kNN
  • Export pdist in milk namespace
  • Add Eigen to source distribution
  • Add measures.curves.roc
  • Add mds_dists function
  • Add verbose argument to milk.tests.run

New in 0.5 (05 Nov 2012)

  • Add coordinate-descent based LASSO
  • Add unsupervised.center function
  • Make zscore work with NaNs (by ignoring them)
  • Propagate apply_many calls through transformers
  • Much faster SVM classification with means a much faster defaultlearner() [measured 2.5x speedup on yeast dataset!]

For older versions, see ChangeLog file

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Expressive Body Capture: 3D Hands, Face, and Body from a Single Image [Project Page] [Paper] [Supp. Mat.] Table of Contents License Description Fittin

Vassilis Choutas 1.3k Jan 07, 2023
A framework for analyzing computer vision models with simulated data

3DB: A framework for analyzing computer vision models with simulated data Paper Quickstart guide Blog post Installation Follow instructions on: https:

3DB 112 Jan 01, 2023
Unsupervised clustering of high content screen samples

Microscopium Unsupervised clustering and dataset exploration for high content screens. See microscopium in action Public dataset BBBC021 from the Broa

60 Dec 05, 2022
Class activation maps for your PyTorch models (CAM, Grad-CAM, Grad-CAM++, Smooth Grad-CAM++, Score-CAM, SS-CAM, IS-CAM, XGrad-CAM, Layer-CAM)

TorchCAM: class activation explorer Simple way to leverage the class-specific activation of convolutional layers in PyTorch. Quick Tour Setting your C

F-G Fernandez 1.2k Dec 29, 2022
Controlling the MicriSpotAI robot from scratch

Project-MicroSpot-AI Controlling the MicriSpotAI robot from scratch Colaborators Alexander Dennis Components from MicroSpot The MicriSpotAI has the fo

Dennis Núñez-Fernández 5 Oct 20, 2022
ChebLieNet, a spectral graph neural network turned equivariant by Riemannian geometry on Lie groups.

ChebLieNet: Invariant spectral graph NNs turned equivariant by Riemannian geometry on Lie groups Hugo Aguettaz, Erik J. Bekkers, Michaël Defferrard We

haguettaz 12 Dec 10, 2022
How Effective is Incongruity? Implications for Code-mix Sarcasm Detection.

Code for the paper: How Effective is Incongruity? Implications for Code-mix Sarcasm Detection - ICON ACL 2021

2 Jun 05, 2022
Supervised Contrastive Learning for Product Matching

Contrastive Product Matching This repository contains the code and data download links to reproduce the experiments of the paper "Supervised Contrasti

Web-based Systems Group @ University of Mannheim 18 Dec 10, 2022
Implementation of Auto-Conditioned Recurrent Networks for Extended Complex Human Motion Synthesis

acLSTM_motion This folder contains an implementation of acRNN for the CMU motion database written in Pytorch. See the following links for more backgro

Yi_Zhou 61 Sep 07, 2022
YOLOX + ROS(1, 2) object detection package

YOLOX + ROS(1, 2) object detection package

Ar-Ray 158 Dec 21, 2022
A pytorch implementation of faster RCNN detection framework (Use detectron2, it's a masterpiece)

Notice(2019.11.2) This repo was built back two years ago when there were no pytorch detection implementation that can achieve reasonable performance.

Ruotian(RT) Luo 1.8k Jan 01, 2023
Lightweight Cuda Renderer with Python Wrapper.

pyRender Lightweight Cuda Renderer with Python Wrapper. Compile Change compile.sh line 5 to the glm library include path. This library can be download

Jingwei Huang 53 Dec 02, 2022
Jremesh-tools - Blender addon for quad remeshing

JRemesh Tools Blender 2.8 - 3.x addon for quad remeshing. Currently it is a wrap

Jayanam 89 Dec 30, 2022
Si Adek Keras is software VR dangerous object detection.

Si Adek Python Keras Sistem Informasi Deteksi Benda Berbahaya Keras Python. Version 1.0 Developed by Ananda Rauf Maududi. Developed date: 24 November

Ananda Rauf 1 Dec 21, 2021
Code for Referring Image Segmentation via Cross-Modal Progressive Comprehension, CVPR2020.

CMPC-Refseg Code of our CVPR 2020 paper Referring Image Segmentation via Cross-Modal Progressive Comprehension. Shaofei Huang*, Tianrui Hui*, Si Liu,

spyflying 55 Dec 01, 2022
Hypercomplex Neural Networks with PyTorch

HyperNets Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate resear

Eleonora Grassucci 21 Dec 27, 2022
The official implementation of the Hybrid Self-Attention NEAT algorithm

PUREPLES - Pure Python Library for ES-HyperNEAT About This is a library of evolutionary algorithms with a focus on neuroevolution, implemented in pure

Adrian Westh 91 Dec 12, 2022
A Bayesian cognition approach for belief updating of correlation judgement through uncertainty visualizations

Overview Code and supplemental materials for Karduni et al., 2020 IEEE Vis. "A Bayesian cognition approach for belief updating of correlation judgemen

Ryan Wesslen 1 Feb 08, 2022
This repo provides the base code for pytorch-lightning and weight and biases simultaneous integration.

Write your model faster with pytorch-lightning-wadb-code-backbone This repository provides the base code for pytorch-lightning and weight and biases s

9 Mar 29, 2022
A PyTorch implementation of a Factorization Machine module in cython.

fmpytorch A library for factorization machines in pytorch. A factorization machine is like a linear model, except multiplicative interaction terms bet

Jack Hessel 167 Jul 06, 2022