Optimized code based on M2 for faster image captioning training

Overview

Transformer Captioning

This repository contains the code for Transformer-based image captioning. Based on meshed-memory-transformer, we further optimize the code for FASTER training without any accuracy decline.

Specifically, we optimize following aspects:

  • vocab: we pre-tokenize the dataset so there are no ' '(space token) in vocab or generated sentences.
  • Dataloader: we optimize speed of dataloader and achieve 2x~6x speed-up.
  • BeamSearch:
    • Make ops parallel in beam_search.py (e.g. loop gather -> parallel gather)
    • Use cheaper ops (e.g. torch.sort -> torch.topk)
    • Use faster and specialized functions instead of general ones
  • Self-critical Training
    • Compute Cider by index instead of raw text
    • Cache tf-idf vector of gts instead of computing it again and again
    • drop on-the-fly tokenization since it is too SLOW.
  • contiguous model parameter
  • other details...

speed-up result (1 GeForce 1080Ti GPU, num_workers=8, batch_size=50(XE)/100(SCST))

Training its/s Original Optimized Accelerate
XE 7.5 10.3 138%
SCST 0.6 1.3 204%
Dataloader its/s Original XE Optimized XE Accelerate Original SCST Optimized SCST Accelerate
batch size=50 12.5 52.5 320% 29.3 90.7 209%
batch size=100 5.5 33.5 510% 22.3 88.5 297%
batch size=150 3.7 25.4 580% 13.4 71.8 435%
batch size=200 2.7 20.1 650% 11.4 54.1 376%

Things I have tried but not useful

  • TorchText n-gram counter: slower than the original one.
  • nn.Module.MultiHeadAttention: slightly faster than original one.
  • GPU cider: very slow
  • BeamableMM: slower than the original

Environment setup

Clone the repository and create the m2release conda environment using the environment.yml file:

conda env create -f environment.yml
conda activate m2release

Then download spacy data by executing the following command:

python -m spacy download en

Note: Python 3.6 is required to run our code.

Data preparation

To run the code, annotations and detection features for the COCO dataset are needed. Please download the annotations file annotations.zip and extract it.

Detection features are computed with the code provided by [1]. To reproduce our result, please download the COCO features file coco_detections.hdf5 (~53.5 GB), in which detections of each image are stored under the <image_id>_features key. <image_id> is the id of each COCO image, without leading zeros (e.g. the <image_id> for COCO_val2014_000000037209.jpg is 37209), and each value should be a (N, 2048) tensor, where N is the number of detections.

REMEMBER to do pre-tokenize

python pre_tokenize.py

Evaluation

Run python test.py using the following arguments:

Argument Possible values
--batch_size Batch size (default: 10)
--workers Number of workers (default: 0)
--features_path Path to detection features file
--annotation_folder Path to folder with COCO annotations

Training procedure

Run python train.py using the following arguments:

Argument Possible values
--exp_name Experiment name
--batch_size Batch size (default: 10)
--workers Number of workers (default: 0)
--head Number of heads (default: 8)
--resume_last If used, the training will be resumed from the last checkpoint.
--resume_best If used, the training will be resumed from the best checkpoint.
--features_path Path to detection features file
--annotation_folder Path to folder with COCO annotations
--logs_folder Path folder for tensorboard logs (default: "tensorboard_logs")

For example, to train our model with the parameters used in our experiments, use

We recommend to use batch size=100 during SCST stage. Since it will accelerate convergence without obvious accuracy decline

python train.py --exp_name test --batch_size 50 --head 8 --features_path ~/datassd/coco_detections.hdf5 --annotation_folder annotation --workers 8 --rl_batch_size 100 --image_field FasterImageDetectionsField --model transformer --seed 118

References

Owner
lyricpoem
lyricpoem
Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data recorded in NumPy array

shindo.py Calculates JMA (Japan Meteorological Agency) seismic intensity (shindo) scale from acceleration data stored in NumPy array Introduction Japa

RR_Inyo 3 Sep 23, 2022
This repository focus on Image Captioning & Video Captioning & Seq-to-Seq Learning & NLP

Awesome-Visual-Captioning Table of Contents ACL-2021 CVPR-2021 AAAI-2021 ACMMM-2020 NeurIPS-2020 ECCV-2020 CVPR-2020 ACL-2020 AAAI-2020 ACL-2019 NeurI

Ziqi Zhang 362 Jan 03, 2023
Huawei Hackathon 2021 - Sweden (Stockholm)

huawei-hackathon-2021 Contributors DrakeAxelrod Challenge Requirements: python=3.8.10 Standard libraries (no importing) Important factors: Data depend

Drake Axelrod 32 Nov 08, 2022
Avalanche RL: an End-to-End Library for Continual Reinforcement Learning

Avalanche RL: an End-to-End Library for Continual Reinforcement Learning Avalanche Website | Getting Started | Examples | Tutorial | API Doc | Paper |

ContinualAI 43 Dec 24, 2022
Angular & Electron desktop UI framework. Angular components for native looking and behaving macOS desktop UI (Electron/Web)

Angular Desktop UI This is a collection for native desktop like user interface components in Angular, especially useful for Electron apps. It starts w

Marc J. Schmidt 49 Dec 22, 2022
A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku.

Automatic_Background_Remover A Web API for automatic background removal using Deep Learning. App is made using Flask and deployed on Heroku. 👉 https:

Gaurav 16 Oct 29, 2022
Pixel-level Crack Detection From Images Of Levee Systems : A Comparative Study

PIXEL-LEVEL CRACK DETECTION FROM IMAGES OF LEVEE SYSTEMS : A COMPARATIVE STUDY G

Manisha Panta 2 Jul 23, 2022
Power Core Simulator!

Power Core Simulator Power Core Simulator is a simulator based off the Roblox game "Pinewood Builders Computer Core". In this simulator, you can choos

BananaJeans 1 Nov 13, 2021
A PyTorch implementation of SlowFast based on ICCV 2019 paper "SlowFast Networks for Video Recognition"

SlowFast A PyTorch implementation of SlowFast based on ICCV 2019 paper SlowFast Networks for Video Recognition. Requirements Anaconda PyTorch conda in

Hao Ren 8 Dec 23, 2022
A simple, fast, and efficient object detector without FPN

You Only Look One-level Feature (YOLOF), CVPR2021 A simple, fast, and efficient object detector without FPN. This repo provides an implementation for

789 Jan 09, 2023
Official Repository for Machine Learning class - Physics Without Frontiers 2021

PWF 2021 Física Sin Fronteras es un proyecto del Centro Internacional de Física Teórica (ICTP) en Trieste Italia. El ICTP es un centro dedicado a fome

36 Aug 06, 2022
you can add any codes in any language by creating its respective folder (if already not available).

HACKTOBERFEST-2021-WEB-DEV Beginner-Hacktoberfest Need Your first pr for hacktoberfest 2k21 ? come on in About This is repository of Responsive Portfo

Suman Sharma 8 Oct 17, 2022
Contrastive Fact Verification

VitaminC This repository contains the dataset and models for the NAACL 2021 paper: Get Your Vitamin C! Robust Fact Verification with Contrastive Evide

47 Dec 19, 2022
AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

AdelaiDet is an open source toolbox for multiple instance-level detection and recognition tasks.

Adelaide Intelligent Machines (AIM) Group 3k Jan 02, 2023
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
Safe Bayesian Optimization

SafeOpt - Safe Bayesian Optimization This code implements an adapted version of the safe, Bayesian optimization algorithm, SafeOpt [1], [2]. It also p

Felix Berkenkamp 111 Dec 11, 2022
PyTorch wrapper for Taichi data-oriented class

Stannum PyTorch wrapper for Taichi data-oriented class PRs are welcomed, please see TODOs. Usage from stannum import Tin import torch data_oriented =

86 Dec 23, 2022
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation

Putting NeRF on a Diet: Semantically Consistent Few-Shot View Synthesis Implementation This project attempted to implement the paper Putting NeRF on a

254 Dec 27, 2022
Efficient Two-Step Networks for Temporal Action Segmentation (Neurocomputing 2021)

Efficient Two-Step Networks for Temporal Action Segmentation This repository provides a PyTorch implementation of the paper Efficient Two-Step Network

8 Apr 16, 2022