Re-implement CycleGAN in Tensorlayer

Overview

CycleGAN_Tensorlayer

Re-implement CycleGAN in TensorLayer

  • Original CycleGAN
  • Improved CycleGAN with resize-convolution

Prerequisites:

  • TensorLayer
  • TensorFlow
  • Python

Run:

CUDA_VISIBLE_DEVICES=0 python main.py 

(if datasets are collected by yourself, you can use dataset_clean.py or dataset_crop.py to pre-process images)

Theory:

The generator process:

Image text

The discriminator process:

Image text

Result Improvement

  • Data augmentation
  • Resize convolution[4]
  • Instance normalization[5]

data augmentation:

Image text

Instance normalization(comparision by original paper https://arxiv.org/abs/1607.08022):

Image text

Resize convolution (Remove Checkerboard Artifacts):

Image text

Image text

Final Results:

Image text

Image text

Reference:

Comments
  • Difference from original code

    Difference from original code

    HI very nice implemented cyclegan I have a few questions...

    1. What does "Resize Convolution" mean?
    2. I wonder what is different from the original code of the author.
    opened by taki0112 7
  • Color inversion, black image and nan in loss after ~20 epochs

    Color inversion, black image and nan in loss after ~20 epochs

    I've tried to train the model on original summer2winter_yosemite dataset. After ~20 epochs all sample images turned completely black, and all all loss parameters turned to nan. However, the model continued to run for 30 more epochs regularly saving checkpoints until I stopped it.

    I've also used another, my own dataset, and it ran correctly for 70 epochs at least, unfortunately the only result I had was color inversion of images. Any advice on changing training parameters (I used default)?

    opened by victor-felicitas 0
  • How to change test output size?

    How to change test output size?

    Hi! It is a great implementation of Cyclegan, providing excellent results on Hiptensorflow and ROCm. However, I could not use it to generate test images of different from 256x256 sizes. How can I change that?

    For now, I have trained the model on 256x256 images and try to test it on bigger ones. I tried adding two more flags to main.py: flags.DEFINE_integer("image_width", 420, "The size of image to use (will be center cropped) [256]") flags.DEFINE_integer("image_height", 420, "The size of image to use (will be center cropped) [256]")

    Which I use later in Test section: test_A = tf.placeholder(tf.float32, [FLAGS.batch_size, FLAGS.image_height, FLAGS.image_width, FLAGS.c_dim], name='test_x') test_B = tf.placeholder(tf.float32, [FLAGS.batch_size, FLAGS.image_height, FLAGS.image_width, FLAGS.c_dim], name='test_y')

    However, I always get error: Invalid argument: Conv2DSlowBackpropInput: Size of out_backprop doesn't match computed: actual = 105, computed = 64 Traceback (most recent call last): File "main.py", line 285, in tf.app.run() File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/platform/app.py", line 44, in run _sys.exit(main(_sys.argv[:1] + flags_passthrough)) File "main.py", line 281, in main test_cyclegan() File "main.py", line 262, in test_cyclegan fake_img = sess.run(net_g_logits, feed_dict={in_var: sample_image}) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 767, in run run_metadata_ptr) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 965, in _run feed_dict_string, options, run_metadata) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 1015, in _do_run target_list, options, run_metadata) File "/usr/local/lib/python2.7/dist-packages/tensorflow/python/client/session.py", line 1035, in _do_call raise type(e)(node_def, op, message) tensorflow.python.framework.errors_impl.InvalidArgumentError: Conv2DSlowBackpropInput: Size of out_backprop doesn't match computed: actual = 105, computed = 64 [[Node: gen_A2B/u64/conv2d_transpose = Conv2DBackpropInput[T=DT_FLOAT, data_format="NHWC", padding="SAME", strides=[1, 2, 2, 1], use_cudnn_on_gpu=true, _device="/job:localhost/replica:0/task:0/gpu:0"](gen_A2B/u64/conv2d_transpose/output_shape, gen_A2B/u64/W_deconv2d/read, gen_A2B/b_residual_add/8)]]

    Is there any way to choose output image size? Original Cyclegan has special option to choose it - how can i implement it? resize_or_crop = 'resize_and_crop', -- resizing/cropping strategy: resize_and_crop | crop | scale_width | scale_height

    Any help would be appreciated!

    opened by victor-felicitas 0
  • About the imagepool.

    About the imagepool.

    opened by Zardinality 0
  • Error in main.py?

    Error in main.py?

    Hi @zsdonghao @luoxier , Is there an error in your main.py: _, errGB2A = sess.run([g_b2a_optim, g_b2a_loss], feed_dict={real_A: batch_imgB, real_B: batch_imgB}) Does it should be: _, errGB2A = sess.run([g_b2a_optim, g_b2a_loss], feed_dict={real_A: batch_imgA, real_B: batch_imgB}) Could you please check it and let me know, thanks.

    opened by yongqiangzhang1 2
  • Where are datasets shown in readme?

    Where are datasets shown in readme?

    opened by Zardinality 7
Releases(0.1)
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.

sne4onnx A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or

Katsuya Hyodo 10 Aug 30, 2022
DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Dimensionality Reduction + Clustering + Unsupervised Score Metrics Introduction

11 Nov 15, 2022
LSUN Dataset Documentation and Demo Code

LSUN Please check LSUN webpage for more information about the dataset. Data Release All the images in one category are stored in one lmdb database fil

Fisher Yu 426 Jan 02, 2023
Official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo'

IterMVS official source code of paper 'IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo' Introduction IterMVS is a novel lear

Fangjinhua Wang 127 Jan 04, 2023
automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..)

Automatic-precautionary-guard automated systems to assist guarding corona Virus precautions for Closed Rooms (e.g. Halls, offices, etc..) what is this

badra 0 Jan 06, 2022
New AidForBlind - Various Libraries used like OpenCV and other mentioned in Requirements.txt

AidForBlind Recommended PyCharm IDE Various Libraries used like OpenCV and other

Aalhad Chandewar 1 Jan 13, 2022
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

FlyingRoastDuck 59 Oct 31, 2022
🔀 Visual Room Rearrangement

AI2-THOR Rearrangement Challenge Welcome to the 2021 AI2-THOR Rearrangement Challenge hosted at the CVPR'21 Embodied-AI Workshop. The goal of this cha

AI2 55 Dec 22, 2022
My implementation of Fully Convolutional Neural Networks in Keras

Keras-FCN This repository contains my implementation of Fully Convolutional Networks in Keras (Tensorflow backend). Currently, semantic segmentation c

The Duy Nguyen 15 Jan 13, 2020
History Aware Multimodal Transformer for Vision-and-Language Navigation

History Aware Multimodal Transformer for Vision-and-Language Navigation This repository is the official implementation of History Aware Multimodal Tra

Shizhe Chen 46 Nov 23, 2022
Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021)

EMI-FGSM This repository contains code to reproduce results from the paper: Boosting Adversarial Attacks with Enhanced Momentum (BMVC 2021) Xiaosen Wa

John Hopcroft Lab at HUST 10 Sep 26, 2022
Code for the KDD 2021 paper 'Filtration Curves for Graph Representation'

Filtration Curves for Graph Representation This repository provides the code from the KDD'21 paper Filtration Curves for Graph Representation. Depende

Machine Learning and Computational Biology Lab 16 Oct 16, 2022
kapre: Keras Audio Preprocessors

Kapre Keras Audio Preprocessors - compute STFT, ISTFT, Melspectrogram, and others on GPU real-time. Tested on Python 3.6 and 3.7 Why Kapre? vs. Pre-co

Keunwoo Choi 867 Dec 29, 2022
Python library containing BART query generation and BERT-based Siamese models for neural retrieval.

Neural Retrieval Embedding-based Zero-shot Retrieval through Query Generation leverages query synthesis over large corpuses of unlabeled text (such as

Amazon Web Services - Labs 35 Apr 14, 2022
The implement of papar "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization"

SIGIR2021-EGLN The implement of paper "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization" Neural graph based Col

15 Dec 27, 2022
Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs

Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs In this work, we propose an algorithm DP-SCAFFOLD(-warm), whic

19 Nov 10, 2022
Adds timm pretrained backbone to pytorch's FasterRcnn model

Operating Systems Lab (ETCS-352) Experiments for Operating Systems Lab (ETCS-352) performed by me in 2021 at uni. All codes are written by me except t

Mriganka Nath 12 Dec 03, 2022
Code for SIMMC 2.0: A Task-oriented Dialog Dataset for Immersive Multimodal Conversations

The Second Situated Interactive MultiModal Conversations (SIMMC 2.0) Challenge 2021 Welcome to the Second Situated Interactive Multimodal Conversation

Facebook Research 81 Nov 22, 2022
Implementation of PyTorch-based multi-task pre-trained models

mtdp Library containing implementation related to the research paper "Multi-task pre-training of deep neural networks for digital pathology" (Mormont

Romain Mormont 27 Oct 14, 2022
HairCLIP: Design Your Hair by Text and Reference Image

Overview This repository hosts the official PyTorch implementation of the paper: "HairCLIP: Design Your Hair by Text and Reference Image". Our single

322 Jan 06, 2023