Data and Code for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning"

Overview

Introduction

Code and data for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning".

We construct a new large-scale benchmark, Geometry3K, which consists of 3,002 geometry problems with dense annotation in formal language. We define 91 predicates and their corresponding literal templates to describe each problem. All predicates are defined in here. Four data examples in the Geometry3K dataset are shown below:

example

We further propose a novel geometry solving approach with formal language and symbolic reasoning, called Interpretable Geometry Problem Solver (Inter-GPS). Inter-GPS is the first geometry problem solver that achieves automatic program parsing and interpretable symbolic reasoning. Inter-GPS parses the problem text and diagram into formal language automatically via rule-based text parsing and neural object detecting, respectively. Moreover, Inter-GPS incorporates theorem knowledge as conditional rules and performs symbolic reasoning step by step.

model

Prepare the Dataset

First, unzip data files into data/geometry3k:

. data/unzip_data.sh

You can alternatively visit the Google Drive link to download the Geometry dataset and unzip it.

Requirements

Python 3.6+
torch 1.7.1
transformers 4.8.2
python3-pip

Install all required python dependencies:

pip3 install -r requirement.txt

Run Inter-GPS Directly

The Final Search Strategy

Run the final symbolic solver Inter-GPS without preprocessing data by the following commands:

cd symbolic_solver
python test.py --label final --strategy final

It applies the final search strategy (predict + low-first) with generated logic forms from the diagram parser and text parser. The solving result file and logging file will be saved in pred_results and logs, respectively.

It takes about 5 minutes for the solving process over the 601 test problems with an Intel CPU 10900K with 20 threads. If you don't have a high-performance CPU, please assign a smaller number of threads and larger searching time limit for each problem. For example:

python test.py --label final --strategy final --time_limit 200 --num_threads 4

Run the symbolic solver with annotated logic forms from the dataset:

python test.py --label final-gt --strategy final --use_annotated

Note that the results could differ slightly in each individual experiment and on different computing platforms. The differences are mainly resulted from randomness of the search process, dependency versions, CPU features, and running parameters. It is highly recommended to run the solver with multiple times and report the average result of the multiple experiments.

Other Search Strategies

Also, you can run the solver with other search strategies listed in Table 7 in the paper by running the following commands, receptively:

  • Predict-based search strategy (predict + random) with annotated logic forms:
python test.py --label predict --strategy predict --use_annotated
  • Random search strategy with annotated logic forms:
python test.py --label random --strategy random --use_annotated
  • Low-first search strategy with annotated logic forms:
python test.py --label low-first --strategy low-first --use_annotated

All these result files reported in the Table 7 are released in symbolic_solver/pred_results and symbolic_solver/logs, respectively.

Calculate Accuracies

You can obtain accuracies for different question types by running python sub_acc.py --result_file {result_json_file} . For example:

python sub_acc.py --result_file pred_results/final/logic_1612098244-predict_low-first_1.json

Run Inter-GPS from Scratch

Text Parser

Parse the problem text into literals (logic forms).

cd text_parser
python text_parser.py

Diagram Parser

The diagram parser converts a problem diagram into literals (logic forms). Only the most core running code is shown as following. If you would like to know every detail, please refer to this README file.

Unzip our detection results of text regions and symbols:

cd detection_results
unzip -d box_results box_results.zip
unzip -d ocr_results ocr_results.zip

Generate diagram logic forms by running the following command:

cd parser
python diagram_parser.py \
--data_path ../../data/geometry3k \
--ocr_path ../detection_results/ocr_results \
--box_path ../detection_results/box_results \
--output_path ../diagram_logic_forms.json

Theorem Predictor

  1. Generate template-based and random-ordered theorem sequences:
cd theorem_predict/tools
python generate_random_seqs.py

It generates two files:

  • results/train/pred_seqs_train_l30_n100_template.json: 100 template-based sequences with a maximum length of 30 for each training data
  • results/test/pred_seqs_test_l100_random.json: 1 random-order sequence with a maximum length of 100 for each testing data
  1. (Optional) Generate pseudo-optimal theorem sequences for each training data:
python check_theorem_seq.py

It will take about 20 hours to attempt 100 tries over all training data! If you want to save time, just skip this step and use our generated data in theorem_predict/results/train/splits instead.

  1. (Optional) Merge 100 tries of pseudo-optimal theorem sequences into one file.
python merge_all_correct_json.py
  1. (Optional) Train the theorem predictor from scratch:
python train_transformer.py

If you want save time, you could skip the step above and download checkpoint model directly:

cd theorem_predict/models
wget https://acl2021-intergps.s3.us-west-1.amazonaws.com/tp_model_best.pt
  1. Evaluate the the theorem predictor to generate predicted theorem sequences:
cd theorem_predict
python eval_transformer.py
  1. Generate theorem sequences for the predict-based strategy (predict + random):
cd theorem_predict/tools
python add_random_seq_to_pred_seq.py

Symbolic Solver

Finally, run the symbolic solver with the Final search strategy (predict + low-first) over generated logic forms:

cd symbolic_solver
python test.py --label final_new \
--strategy final \
--text_logic_form_path ../text_parser/text_logic_forms.json \
--diagram_logic_form_path ../diagram_parser/diagram_logic_forms.json \
--predict_path ../theorem_predict/results/test/pred_seqs_test_bart_best.json

Data Annotation Tools

We release the data collection tools that probably help you extend our dataset in the future work.

Data Collection

The data collection tool is used to collect geometry problems and the corresponding logical forms.

cd annotation_tool/data_collection
python app.py

labelImg

Symbol Labeling

LabelImg is a graphical image annotation tool and label object bounding boxes in images. We use this tool to label text regions and symbols in the diagram. If you are using the Linux system, you can just run the following commands to install the tool:

cd annotation_tool/labelImg
sudo apt-get install pyqt5-dev-tools
sudo pip3 install -r requirements/requirements-linux-python3.txt
make qt5py3

Run the labeling tool:

python labelImg.py

After running the tool, click the Open Dir button to open the data directory containing problem images, for example, InterGPS/data/geometry3k/symbols, and choose Use default label to use pre-defined labels in data/predefined_classes.txt. Note that pre-defined labels in data/predefined_classes.txt are consistent with labels in diagram_parser/detection/classes.txt.

labelImg

Follow the instructions to install the LabelImg package on other systems or learn more about the usage details.

Citation

If the paper, the dataset, or the code helps you, please cite the paper in the following format :

@inproceedings{lu2021inter,
  title = {Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning},
  author = {Lu, Pan and Gong, Ran and Jiang, Shibiao and Qiu, Liang and Huang, Siyuan and Liang, Xiaodan and Zhu, Song-Chun},
  booktitle = {The Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (ACL-IJCNLP 2021)},
  year = {2021}
}

Q&A

If you encounter any problem, feel free to either directly contact the first authors or leave an issue in the github repo.

Comments
  • Sharing Training Details

    Sharing Training Details

    Hi Pan,

    Your paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning" is awesome.

    However, when reproducing results of this work, I have one problem. I trained the symbol detection model with the data you provided, but the model could not perform as well as the box_result you released. Could you please share more training details?

    Thank you very much and looking forward to your reply.

    opened by YusenZhang826 3
  • DataSet Generation

    DataSet Generation

    Hi Pan, Loved your work in InterGPS. We were planning to extend the dataset, using the annotation tools shared. We wanted to know in logic_form.json for each question (Ground Truth), how was point positions added was this done manually or using some subroutine? Thanks, Akshat

    opened by Akshat188 1
  • Providing a pretrained object detection model for text and symbols

    Providing a pretrained object detection model for text and symbols

    Hello, Thanks for your work! Could you please provide a pretrained object detection model, e.g. the one mentioned in the documentation here: models/exp0/csv_retinanet_19.pt?

    Thank you in advance :)

    opened by supitalp 1
  • About datasets

    About datasets

    Hello, how can I expand the data set of Geometry3K? Where the math geometry problems of Geometry3K come from? Could you please provide more specific web links or other information? Thank you very much!

    opened by mingliangzhang2018 1
  • About the file of  “diagram_logic_forms_pred.json”

    About the file of “diagram_logic_forms_pred.json”

    Excuse me, could you tell me about whether the content of file “diagram_logic_forms_pred.json" is the predicted results of your diagram parser? Thanks every much!

    opened by mingliangzhang2018 1
  • Poor performance of theorem predictor

    Poor performance of theorem predictor

    Hello, Pan. Thank you for your open source.

    I download checkpoint model from https://acl2021-intergps.s3.us-west-1.amazonaws.com/tp_model_best.pt But the evaluation results are empty. How can I get it back to normal? Thanks.

    image

    opened by ICanFlyGFC 9
Releases(Latest)
Owner
Pan Lu
Computer Science
Pan Lu
The official implementation of the CVPR2021 paper: Decoupled Dynamic Filter Networks

Decoupled Dynamic Filter Networks This repo is the official implementation of CVPR2021 paper: "Decoupled Dynamic Filter Networks". Introduction DDF is

F.S.Fire 180 Dec 30, 2022
Analysis code and Latex source of the manuscript describing the conditional permutation test of confounding bias in predictive modelling.

Git repositoty of the manuscript entitled Statistical quantification of confounding bias in predictive modelling by Tamas Spisak The manuscript descri

PNI - Predictive Neuroimaging Lab, University Hospital Essen, Germany 0 Nov 22, 2021
The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer"

Shuffle Transformer The implementation of "Shuffle Transformer: Rethinking Spatial Shuffle for Vision Transformer" Introduction Very recently, window-

87 Nov 29, 2022
Yet Another Reinforcement Learning Tutorial

This repo contains self-contained RL implementations

Sungjoon 65 Dec 10, 2022
PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR)

This is a PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR), using subpixel convolution to optimize the inference speed of TecoGAN VSR model. Please refer to the offi

789 Jan 04, 2023
Implementation of the paper Recurrent Glimpse-based Decoder for Detection with Transformer.

REGO-Deformable DETR By Zhe Chen, Jing Zhang, and Dacheng Tao. This repository is the implementation of the paper Recurrent Glimpse-based Decoder for

Zhe Chen 33 Nov 30, 2022
Code for the paper "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Jukebox Code for "Jukebox: A Generative Model for Music" Paper Blog Explorer Colab Insta

OpenAI 6k Jan 02, 2023
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

TUCH This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright License fo

Lea Müller 45 Jan 07, 2023
Code for the bachelors-thesis flaky fault localization

Flaky_Fault_Localization Scripts for the Bachelors-Thesis: "Flaky Fault Localization" by Christian Kasberger. The thesis examines the usefulness of sp

Christian Kasberger 1 Oct 26, 2021
Disentangled Lifespan Face Synthesis

Disentangled Lifespan Face Synthesis Project Page | Paper Demo on Colab Preparation Please follow this github to prepare the environments and dataset.

何森 50 Sep 20, 2022
Language model Prompt And Query Archive

LPAQA: Language model Prompt And Query Archive This repository contains data and code for the paper How Can We Know What Language Models Know? Install

127 Dec 20, 2022
Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks

Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks This is the official code for DyReg model inroduced in Discovering Dyna

Bitdefender Machine Learning 11 Nov 08, 2022
This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.

GANs for Fun Created because I can! GOAL The goal of this repo is to be freely used by ML devs to check the GAN performances without coding from scrat

Sagnik Roy 13 Jan 26, 2022
[NeurIPS 2021] Introspective Distillation for Robust Question Answering

Introspective Distillation (IntroD) This repository is the Pytorch implementation of our paper "Introspective Distillation for Robust Question Answeri

Yulei Niu 13 Jul 26, 2022
Deep generative models of 3D grids for structure-based drug discovery

What is liGAN? liGAN is a research codebase for training and evaluating deep generative models for de novo drug design based on 3D atomic density grid

Matt Ragoza 152 Jan 03, 2023
Code for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss"

PurNet Project for the TIP 2021 Paper "Salient Object Detection with Purificatory Mechanism and Structural Similarity Loss" Abstract Image-based salie

Jinming Su 4 Aug 25, 2022
Official implementation of "A Shared Representation for Photorealistic Driving Simulators" in PyTorch.

A Shared Representation for Photorealistic Driving Simulators The official code for the paper: "A Shared Representation for Photorealistic Driving Sim

VITA lab at EPFL 7 Oct 13, 2022
Experimental solutions to selected exercises from the book [Advances in Financial Machine Learning by Marcos Lopez De Prado]

Advances in Financial Machine Learning Exercises Experimental solutions to selected exercises from the book Advances in Financial Machine Learning by

Brian 1.4k Jan 04, 2023
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices.

CenterFace Introduce CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices. Recent Update 2019.09.

StarClouds 1.2k Dec 21, 2022