MANO hand model porting for the GraspIt simulator

Overview

Learning Joint Reconstruction of Hands and Manipulated Objects - ManoGrasp

Porting the MANO hand model to GraspIt! simulator

Yana Hasson, Gül Varol, Dimitris Tzionas, Igor Kalevatykh, Michael J. Black, Ivan Laptev, Cordelia Schmid, CVPR 2019

Install

Setup ROS interface

This package uses a ROS interface for the GraspIt! simulator.

To install and setup this interface follow the instructions at https://github.com/graspit-simulator/graspit_interface.

Install package

git clone https://github.com/lwohlhart/mano_grasp.git
cd mano_grasp
python setup.py install --user --graspit_dir=$GRASPIT

Model

Model ManoHand will be automatically copied to $GRASPIT directory during the installation.

To copy a model without the code installation use the command:

python setup.py --copy_model_only --graspit_dir=$GRASPIT

Prepare objects

Make sure you have meshlab installed:

sudo apt install meshlab

To prepare object files (.obj, .stl, .ply, .off) for graspit:

python -m mano_grasp.prepare_objects --models_folder /PATH/TO/YOURDATASET/ --file_out YOURDATASET_objects.txt

Usually you want to apply some scaling to the objects to fit the hand, therefore append scales options:

--scales 1000

Use

python -m mano_grasp.prepare_objects --help

to see all available options.

Generate grasps

Start ROS master in one terminal:

roscore

Then in a second terminal start generator:

python -m mano_grasp.generate_grasps --models_file YOURDATASET_objects.txt --path_out PATH_TO_DATASET

Use

python -m mano_grasp.generate_grasps --help

to see all available options.

Citations

If you find this code useful for your research, consider citing:

@INPROCEEDINGS{hasson19_obman,
  title     = {Learning joint reconstruction of hands and manipulated objects},
  author    = {Hasson, Yana and Varol, G{\"u}l and Tzionas, Dimitris and Kalevatykh, Igor and Black, Michael J. and Laptev, Ivan and Schmid, Cordelia},
  booktitle = {CVPR},
  year      = {2019}
}
Owner
Lucas Wohlhart
#AI #ML #WebDev https://www.linkedin.com/in/lwohlhart Graz, Austria 🇪🇺
Lucas Wohlhart
Centroid-UNet is deep neural network model to detect centroids from satellite images.

Centroid UNet - Locating Object Centroids in Aerial/Serial Images Introduction Centroid-UNet is deep neural network model to detect centroids from Aer

GIC-AIT 19 Dec 08, 2022
A library for performing coverage guided fuzzing of neural networks

TensorFuzz: Coverage Guided Fuzzing for Neural Networks This repository contains a library for performing coverage guided fuzzing of neural networks,

Brain Research 195 Dec 28, 2022
Learned Token Pruning for Transformers

LTP: Learned Token Pruning for Transformers Check our paper for more details. Installation We follow the same installation procedure as the original H

Sehoon Kim 52 Dec 29, 2022
GuideDog is an AI/ML-based mobile app designed to assist the lives of the visually impaired, 100% voice-controlled

Guidedog Authors: Kyuhee Jo, Steven Gunarso, Jacky Wang, Raghav Sharma GuideDog is an AI/ML-based mobile app designed to assist the lives of the visua

Kyuhee Jo 5 Nov 24, 2021
Unofficial keras(tensorflow) implementation of MAE model from Masked Autoencoders Are Scalable Vision Learners

MAE-keras Unofficial keras(tensorflow) implementation of MAE model described in 'Masked Autoencoders Are Scalable Vision Learners'. This work has been

Yewon 11 Jun 12, 2022
Official code for our EMNLP2021 Outstanding Paper MindCraft: Theory of Mind Modeling for Situated Dialogue in Collaborative Tasks

MindCraft Authors: Cristian-Paul Bara*, Sky CH-Wang*, Joyce Chai This is the official code repository for the paper (arXiv link): Cristian-Paul Bara,

Situated Language and Embodied Dialogue (SLED) Research Group 14 Dec 29, 2022
Using machine learning to predict undergrad college admissions.

College-Prediction Project- Overview: Many have tried, many have failed. Few trailblazers are ambitious enought to chase acceptance into the top 15 un

John H Klinges 1 Jan 05, 2022
Pytorch implementation of “Recursive Non-Autoregressive Graph-to-Graph Transformer for Dependency Parsing with Iterative Refinement”

Graph-to-Graph Transformers Self-attention models, such as Transformer, have been hugely successful in a wide range of natural language processing (NL

Idiap Research Institute 40 Aug 14, 2022
Paper Code:A Self-adaptive Weighted Differential Evolution Approach for Large-scale Feature Selection

1. SaWDE.m is the main function 2. DataPartition.m is used to randomly partition the original data into training sets and test sets with a ratio of 7

wangxb 14 Dec 08, 2022
Fine-tune pretrained Convolutional Neural Networks with PyTorch

Fine-tune pretrained Convolutional Neural Networks with PyTorch. Features Gives access to the most popular CNN architectures pretrained on ImageNet. A

Alex Parinov 694 Nov 23, 2022
Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad to your characters in Modo.

Applicator Kit for Modo Applicator Kit for Modo allow you to apply Apple ARKit Face Tracking data from your iPhone or iPad with a TrueDepth camera to

Andrew Buttigieg 3 Aug 24, 2021
Pytorch implementation of our paper under review -- 1xN Pattern for Pruning Convolutional Neural Networks

1xN Pattern for Pruning Convolutional Neural Networks (paper) . This is Pytorch re-implementation of "1xN Pattern for Pruning Convolutional Neural Net

Mingbao Lin (林明宝) 29 Nov 29, 2022
Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

RSS 2020 - Online Domain Adaptation for Occupancy Mapping Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science

Anthony 26 Sep 22, 2022
PyTorch wrapper for Taichi data-oriented class

Stannum PyTorch wrapper for Taichi data-oriented class PRs are welcomed, please see TODOs. Usage from stannum import Tin import torch data_oriented =

86 Dec 23, 2022
ZeroVL - The official implementation of ZeroVL

This repository contains source code necessary to reproduce the results presente

31 Nov 04, 2022
This repo contains implementation of different architectures for emotion recognition in conversations.

Emotion Recognition in Conversations Updates 🔥 🔥 🔥 Date Announcements 03/08/2021 🎆 🎆 We have released a new dataset M2H2: A Multimodal Multiparty

Deep Cognition and Language Research (DeCLaRe) Lab 1k Dec 30, 2022
Self-Supervised Learning

Self-Supervised Learning Features self_supervised offers features like modular framework support for multi-gpu training using PyTorch Lightning easy t

Robin 1 Dec 14, 2021
Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection

Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection (NimPme) The official implementation of Novel Instances Mining with

12 Sep 08, 2022
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,

Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(=1.5.1) GLUON(=0.7.0) framework Top-down strategy: The input image is t

223 Dec 27, 2022
RSNA Intracranial Hemorrhage Detection with python

RSNA Intracranial Hemorrhage Detection This is the source code for the first place solution to the RSNA2019 Intracranial Hemorrhage Detection Challeng

24 Nov 30, 2022