This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers.

Overview

private-transformers

This codebase facilitates fast experimentation of differentially private training of Hugging Face transformers.


What is this? Why an extra codebase?

  • This codebase provides a privacy engine that builds off Opacus, but works way more smoothly with Hugging Face's transformers library.
  • Additionally, we support the ghost clipping technique (see Section 4 of this preprint on how it works) which allows privately training large transformers with considerably reduced memory cost -- in many cases, almost as light as non-private training -- at a modest run-time overhead.
  • With this codebase, we have fine-tuned very large pretrained models, yielding some of the best performing differentially private NLP models to date. Some of these models have performance matching strong non-private baseline approaches. We see strong empirical evidence that highly performant DP NLP models could be built on modest datasets.

Installation

Make sure you have python>=3.8; run the following command:

pip install git+https://github.com/lxuechen/private-transformers.git

To check the package is installed properly, be sure to run the test suite (requires pytest and a GPU) via the following command:

pytest -s tests

Usage

Basic usage

Privately training Hugging Face transformers with our codebase simply consists of 4 steps:

  1. Create your favourite transformer model and optimizer; attach this optimizer to a PrivacyEngine
  2. Compute a per-example loss (1-D tensor) for a mini-batch of data
  3. Pass the loss to optimizer.step or optimizer.virtual_step as a keyword argument
  4. Repeat from step 2

Below is a quick example:

import transformers, torch
from private_transformers import PrivacyEngine
import torch.nn.functional as F

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = transformers.GPT2LMHeadModel.from_pretrained('distilgpt2').to(device)
optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-4)
privacy_engine = PrivacyEngine(
    model,
    batch_size=10,
    sample_size=50000,
    epochs=3,
    max_grad_norm=0.1,
    target_epsilon=3,
)
privacy_engine.attach(optimizer)

batch_size, seq_len = 10, 20
# Inputs are batch-first format, i.e., the first dimension of tensors must be batch dimension.
input_ids = torch.randint(size=[batch_size, seq_len], low=0, high=100, device=device)
# Calling `.train()` is very important; otherwise underlying forward and backward hooks don't run.
model.train()
outputs = model(input_ids=input_ids, return_dict=True)
labels = input_ids[:, 1:, ]
logits = outputs.logits[:, :-1, :].permute(0, 2, 1)
# `loss` is a 1-D tensor of shape (batch_size,).
loss = F.cross_entropy(logits, labels, reduction="none").mean(dim=1)
# This step is different from existing workflows: 
#   Don't call `loss.backward`; leave it to `optimizer.step` to handle backward.
optimizer.step(loss=loss)

The biggest differences compared to Opacus are:

  • We require the per-example loss (a 1-D tensor) be passed into optimizer.step (or optimizer.virtual_step)
  • The per-example loss must be passed in as a keyword argument.
  • loss.backward() shouldn't be called on the user end; it's called internally in optimizer.step ( or optimizer.virtual_step).
  • Inputs should be in batch-first format; there isn't a toggle to switch between different formats in the engine.

Ghost clipping: memory saving differentially private learning

Turning on ghost clipping requires changing only 1 line. You should notice a drastic reduction in peak GPU memory usage once this is turned on, at a potential cost of slower training speed. One might find this especially useful when constrained to only use older GPUs with small VRAMs or fitting super large models.

import transformers, torch
from private_transformers import PrivacyEngine

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = transformers.GPT2LMHeadModel.from_pretrained('distilgpt2').to(device)
optimizer = torch.optim.Adam(params=model.parameters(), lr=1e-4)
privacy_engine = PrivacyEngine(
    model,
    batch_size=10,
    sample_size=50000,
    epochs=3,
    max_grad_norm=0.1,
    target_epsilon=3,
    ghost_clipping=True,  # The only change you need to make!
)
privacy_engine.attach(optimizer)

We ran stringent numerical tests to ensure the double-backward implementation is correct. Check out files in the tests folder for more on this.

Examples

Code in the examples folder roughly reproduces our results for the table-to-text and classification tasks. There may be some minor discrepancies, since hyperparameters there aren't exactly what's used in the paper. Nevertheless, it should be sufficient to get things started. Detailed instructions are in the readme file of each subfolder.

Currently supported Hugging Face models

Not all models in the Hugging Face library are supported. The main additional work here is to

  1. support per-example gradients for bespoke modules (e.g., T5LayerNorm), and
  2. ensure position_ids are repeated.

We plan to support more models in the future if there's such a need. Feel free to open an issue if you may want to try out specific models that aren't in the current list.

FAQ

I wrote some answers to potential questions here.

Acknowledgements

It would have been impossible to develop this codebase without cool past works and existing codebases. We roughly follow the PrivacyEngine design in Opacus==0.13.0. We directly use an off-the-shelf package for tightly tracking tradeoff functions while composing multiple private mechanisms.

Disclaimer

  • This codebase is not yet production-grade, e.g., cryptographically secure PRNGs are required for sampling noise -- our codebase currently does not use these strong PRNGs.
  • This codebase is born out of the need to experiment with various things for differentially private NLP in rapidly succession. I've tried my best to write clean code, though parts of this codebase may be less tidy than I had hoped given the extremely tight timeline.

Citation

If you found this codebase useful in your research, please consider citing:

@misc{li2021large,
      title={Large Language Models Can Be Strong Differentially Private Learners}, 
      author={Xuechen Li and Florian Tramèr and Percy Liang and Tatsunori Hashimoto},
      year={2021},
      eprint={2110.05679},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
Comments
  • Support BART model

    Support BART model

    Hi, I'm trying to apply your code in BART model. But I got the error like the below:

    ValueError: Ghost clipping does not support parameter sharing. Parameter sharing may be due to default parameter sharing between lm_head and embedding.Please use a model without parameter sharing for ghost clipping.
    

    Does it not support BART model yet??

    opened by SeolhwaLee 7
  • Set another seed won't change the result

    Set another seed won't change the result

    Hi Xuechen,

    I have another issue with the training seed. I would like to relax the random seed so that I can get some statistical results. Tried many different ways but even comment out the set_seed() function, the eva acc is the same until the last digit. May I ask how to relax the random seed? I'm doing experiments on examples/classification.

    Thanks!

    opened by JunyiZhu-AI 6
  • Customize loss function / adding regularizer under privacy setting?

    Customize loss function / adding regularizer under privacy setting?

    Hi, thanks again for the great work and the codebase!

    I have a question -- how I'd want to customize loss function in the codebase? I've been trying to do that, e.g. adding a per-example L1 regularization term to vector_loss in trainer, but I didn't manage to get it running after several attempts.

    There's a related discussion/PR in Opacus codebase https://github.com/pytorch/opacus/issues/249.

    However, there're a few tricky things I can see: -- In private-transformers, backward() behavior is not managed on the user end. -- also, 1-D vector_loss is required for private gradient update - optimizer.stepor optimizer.virtual_step

    My intuition is that I can add to vector_loss (per-example loss) at this line before the loss gets passed to the privacy engine.

    However I am afraid privacy concern is also an issue. I am aware of that Private-Transformers overrides compute_loss() in HF trainer, to exclude regularization terms that might mess up with privacy accounting.

    Sorry my question is not super detailed but I hope this makes sense and really appreciate for any comments.

    Thank you!

    opened by shi-kejian 4
  • Using dataloader with fixed batch size

    Using dataloader with fixed batch size

    Hi, thanks for providing this codebase!

    So for a while I've been using Opacus to experiment with DP-SGD and RoBERTa, but I wanted to check out your PrivacyEngine, mainly because of the training speed and memory optimizations. With Opacus, I always trained with their UniformWithReplacementSampler for accurate RDP accounting and as far as I can tell, you're training with fixed size batches in your examples. I'm wondering if there's a reason the UniformWithReplacementSampler isn't needed in your codebase anymore, and if the uniform sampler is compatible with your modified PrivacyEngine because the optimizer needs to be able to deal with variations in batch size?

    opened by xplip 4
  • How to set max_compositions

    How to set max_compositions

    Hi Chen, do you know how to set the max_compositions/steps param? The default at https://github.com/lxuechen/private-transformers/blob/684e27fcd9978539fbabc357c7ea506c0353c771/private_transformers/privacy_utils/privacy_engine.py#L148 is 0 but would raise an error

    private-transformers/private_transformers/privacy_utils/accounting/gdp_accounting.py:33: RuntimeWarning: invalid value encountered in double_scalars return norm.cdf(-eps / mu + mu / 2) - np.exp(eps) * norm.cdf(-eps / mu - mu / 2)
    rv_accountant/accountant.py:55: RuntimeWarning: divide by zero encountered in double_scalars mesh_size = 2*eps_error / np.sqrt(2*max_compositions*np.log(2/eta0))
    
    opened by hlzhang109 3
  • Setting small target epsilon like 0.1 fails training

    Setting small target epsilon like 0.1 fails training

    Hi, @lxuechen I tried to set epsilon as 0.1 on SST-2, but it results in a large noise_multiplier: 20853.95 and fails the training where the accuracy is near 0.5 However, setting epsilon as 1 works well. Any idea about this?

    opened by LinkToPast1900 3
  • Private gradient seemingly has been overwritten by non-private gradient.

    Private gradient seemingly has been overwritten by non-private gradient.

    Hi Xuechen, thanks for providing this codebase!

    I tried tweaking the code in examples/classification but the network does not perform as expected. In particular, I tried zeroing out all gradient by this command in _step() and _ghost_step() functions in privacy_engine.py:

    param.grad /= self.batch_size
    param.grad.mul_(0)
    

    After adding this multiplication the network has been trained as normally. And because with the same seed, the network has been even trained to give out the same eval acc. Could you reproduce this result at your private repo? If it behaves like this, then I suppose that the private gradient has been overwritten by the non-private one.

    opened by JunyiZhu-AI 3
  • Questions about sigma search and epsilon from composed tradeoff functions

    Questions about sigma search and epsilon from composed tradeoff functions

    (Making a new issue for this because you probably weren't notified of my comment in the closed original issue)

    Sorry for having to reopen this, but I do have two more (perhaps related) questions after all and would really appreciate if you could help clarify them.

    1. When using the automated sigma search (based on a specified target epsilon and N epochs), the final epsilon computed by the PrivacyEngine after training for N epochs is always much higher than the target epsilon, so it seems that the sigma chosen by get_sigma_from_rdp is too high. This also happens when I run the sentence classification and the table2test examples in the repo. E.g., instead of my target epsilon 8, I will end up with something like epsilon 10-11. How did you get your final epsilon to match the target epsilon in the experiments in your paper?

    2. How do you compute the converted epsilon from composed tradeoff functions when let's say training SST-2 with the default hyperparameters from the examples? Do you reduce the num_compositions=1000 in _eps_from_glw to something way lower than 1000 because the script only runs for ~400 optimization steps and would otherwise always throw the Numerical composition of tradeoff functions failed! Double check privacy parameters. error?

    Originally posted by @xplip in https://github.com/lxuechen/private-transformers/issues/7#issuecomment-987020758

    opened by xplip 3
  • What is the best way to handle large models?

    What is the best way to handle large models?

    Hi all, I was trying to fine-tune GPT-J 6B but I encounter Out Of Memory errors if I use a single-gpu, for non-private training I managed to solve them by using deepspeed but it seems that I cannot use that with opacus or with this codebase. Do you know how I could solve this problem? Thank you in advance:)

    opened by Pier297 2
  • No such file or directory

    No such file or directory

    I want to finetune qqp and here comes an error:

    File "/private-transformers-main/examples/classification/run_classification.py", line 545, in main train_dataset = FewShotDataset(data_args, tokenizer=tokenizer, mode="train", use_demo=use_demo) File "/private-transformers-main/examples/classification/src/dataset.py", line 377, in init with FileLock(lock_path): File "/home/anaconda3/envs/fuck/lib/python3.8/site-packages/filelock/_api.py", line 214, in enter self.acquire() File "/home/anaconda3/envs/fuck/lib/python3.8/site-packages/filelock/_api.py", line 170, in acquire self._acquire() File "/home/anaconda3/envs/fuck/lib/python3.8/site-packages/filelock/_unix.py", line 35, in _acquire fd = os.open(self._lock_file, open_mode) FileNotFoundError: [Errno 2] No such file or directory: 'classification/data/original/QQP/cached_train_RobertaTokenizer_256_qqp_few_shot.lock'

    how can I get this file? thanks.

    opened by trestad 2
  • [DistilBERT] RuntimeError: stack expects each tensor to be equal size

    [DistilBERT] RuntimeError: stack expects each tensor to be equal size

    Hi, @lxuechen, thanks for your repo.

    I met a problem as follows when I tied to finetune DistilBERT. Both BERT and Roberta work well. Any idea about this? Thanks!

    Traceback (most recent call last): ... File "/opt/conda/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context return func(*args, **kwargs) File "/opt/conda/lib/python3.8/site-packages/private_transformers/privacy_utils/privacy_engine.py", line 360, in step self._ghost_step(loss=kwargs.pop("loss")) File "/opt/conda/lib/python3.8/site-packages/private_transformers/privacy_utils/privacy_engine.py", line 261, in _ghost_step self._ghost_helper(loss) File "/opt/conda/lib/python3.8/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context return func(*args, **kwargs) File "/opt/conda/lib/python3.8/site-packages/private_transformers/privacy_utils/privacy_engine.py", line 334, in _ghost_helper coef_sample = self.get_coef_sample() File "/opt/conda/lib/python3.8/site-packages/private_transformers/privacy_utils/privacy_engine.py", line 348, in get_coef_sample norm_sample = self.get_norm_sample() File "/opt/conda/lib/python3.8/site-packages/private_transformers/privacy_utils/privacy_engine.py", line 343, in get_norm_sample norm_sample = torch.stack([param.norm_sample for name, param in self.named_params], dim=0).norm(2, dim=0) RuntimeError: stack expects each tensor to be equal size, but got [50] at entry 0 and [1] at entry 1

    (50 is my batch size)

    opened by LinkToPast1900 1
  • v0.3.0 fixes

    v0.3.0 fixes

    Non-structural fixes.

    • [ ] Convert to make_private style to avoid bad syntax highlighting during static analysis
    • [ ] Improve the cleanliness of examples
    • [ ] Refactor test file and use functorch to simplify ground truth gradients' logic
    • [ ] Don't compute per-sample gradients for weights which don't require gradients
    • [ ] Use the new smart resizer for tokenizer and model
    • [ ] Refactor decoding to use new left padding based construction
    opened by lxuechen 0
Releases(v0.2.3)
Owner
Xuechen Li
learning to learn
Xuechen Li
Code for the paper "A Simple but Tough-to-Beat Baseline for Sentence Embeddings".

Code for the paper "A Simple but Tough-to-Beat Baseline for Sentence Embeddings".

1.1k Dec 27, 2022
Deep Learning Topics with Computer Vision & NLP

Deep learning Udacity Course Deep Learning Topics with Computer Vision & NLP for the AWS Machine Learning Engineer Nanodegree Program Tasks are mostly

Simona Mircheva 1 Jan 20, 2022
Text Analysis & Topic Extraction on Android App user reviews

AndroidApp_TextAnalysis Hi, there! This is code archive for Text Analysis and Topic Extraction from user_reviews of Android App. Dataset Source : http

Fitrie Ratnasari 1 Feb 14, 2022
An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition

CRNN paper:An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 1. create your ow

Tsukinousag1 3 Apr 02, 2022
A Domain Specific Language (DSL) for building language patterns. These can be later compiled into spaCy patterns, pure regex, or any other format

RITA DSL This is a language, loosely based on language Apache UIMA RUTA, focused on writing manual language rules, which compiles into either spaCy co

Šarūnas Navickas 60 Sep 26, 2022
Datasets of Automatic Keyphrase Extraction

This repository contains 20 annotated datasets of Automatic Keyphrase Extraction made available by the research community. Following are the datasets and the original papers that proposed them. If yo

LIAAD - Laboratory of Artificial Intelligence and Decision Support 163 Dec 23, 2022
TFIDF-based QA system for AIO2 competition

AIO2 TF-IDF Baseline This is a very simple question answering system, which is developed as a lightweight baseline for AIO2 competition. In the traini

Masatoshi Suzuki 4 Feb 19, 2022
Contract Understanding Atticus Dataset

Contract Understanding Atticus Dataset This repository contains code for the Contract Understanding Atticus Dataset (CUAD), a dataset for legal contra

The Atticus Project 273 Dec 17, 2022
2021搜狐校园文本匹配算法大赛baseline

sohu2021-baseline 2021搜狐校园文本匹配算法大赛baseline 简介 分享了一个搜狐文本匹配的baseline,主要是通过条件LayerNorm来增加模型的多样性,以实现同一模型处理不同类型的数据、形成不同输出的目的。 线下验证集F1约0.74,线上测试集F1约0.73。

苏剑林(Jianlin Su) 45 Sep 06, 2022
COVID-19 Chatbot with Rasa 2.0: open source conversational AI

COVID-19 chatbot implementation with Rasa open source 2.0, conversational AI framework.

Aazim Parwaz 1 Dec 23, 2022
A workshop with several modules to help learn Feast, an open-source feature store

Workshop: Learning Feast This workshop aims to teach users about Feast, an open-source feature store. We explain concepts & best practices by example,

Feast 52 Jan 05, 2023
Training and evaluation codes for the BertGen paper (ACL-IJCNLP 2021)

BERTGEN This repository is the implementation of the paper "BERTGEN: Multi-task Generation through BERT" (https://arxiv.org/abs/2106.03484). The codeb

<a href=[email protected]"> 9 Oct 26, 2022
An open collection of annotated voices in Japanese language

声庭 (Koniwa): オープンな日本語音声とアノテーションのコレクション Koniwa (声庭): An open collection of annotated voices in Japanese language 概要 Koniwa(声庭)は利用・修正・再配布が自由でオープンな音声とアノテ

Koniwa project 32 Dec 14, 2022
Extract Keywords from sentence or Replace keywords in sentences.

FlashText This module can be used to replace keywords in sentences or extract keywords from sentences. It is based on the FlashText algorithm. Install

Vikash Singh 5.3k Jan 01, 2023
A script that automatically creates a branch name using google translation api and jira api

About google translation api와 jira api을 사용하여 자동으로 브랜치 이름을 만들어주는 스크립트 Setup 환경변수에 다음 3가지를 등록해야 한다. JIRA_USER : JIRA email (ex: hyunwook.kim 2 Dec 20, 2021

🤗🖼️ HuggingPics: Fine-tune Vision Transformers for anything using images found on the web.

🤗 🖼️ HuggingPics Fine-tune Vision Transformers for anything using images found on the web. Check out the video below for a walkthrough of this proje

Nathan Raw 185 Dec 21, 2022
An open source library for deep learning end-to-end dialog systems and chatbots.

DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch. DeepPavlov is designed for development of production re

Neural Networks and Deep Learning lab, MIPT 6k Dec 31, 2022
⛵️The official PyTorch implementation for "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing" (EMNLP 2020).

BERT-of-Theseus Code for paper "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing". BERT-of-Theseus is a new compressed BERT by progre

Kevin Canwen Xu 284 Nov 25, 2022
Easy, fast, effective, and automatic g-code compression!

Getting to the meat of g-code. Easy, fast, effective, and automatic g-code compression! MeatPack nearly doubles the effective data rate of a standard

Scott Mudge 97 Nov 21, 2022
Anuvada: Interpretable Models for NLP using PyTorch

Anuvada: Interpretable Models for NLP using PyTorch So, you want to know why your classifier arrived at a particular decision or why your flashy new d

EDGE 102 Oct 01, 2022