Cl datasets - PyTorch image dataloaders and utility functions to load datasets for supervised continual learning

Overview

Continual learning datasets

Introduction

This repository contains PyTorch image dataloaders and utility functions to load datasets for supervised continual learning. Currently supported datasets:

  • MNIST
  • Pairwise-MNIST
  • Fashion-MNIST
  • not-MNIST (letters version of MNIST, see EMNIST for more detail)
  • CIFAR-10
  • CIFAR-100
  • German Traffic Signs
  • Street View House Numbers (SVHN)
  • Incremental CIFAR-100
  • Incremental TinyImageNet

Features

The provided interface simplifies typical data loading for supervised continual learning scenarios.

  • Dataset order, additional training data (for replay buffers) and test data (for global metrics computation) can all be specified.

  • A batch balancing feature is also available to make sure data from all available classes are available in a training batch.

  • Training data size and channels can be specified. Transformations will be added to make sure input data always has the same size and number of channels. If a single channel is specified, grayscaling will be applied. Otherwise, if 3 channels are specified, single channels will be triplicated. Bicubic interpolation or linear subsampling will be applied to meet the specified size.

Installation

  1. Clone the repository to your machine.
  2. Install the package:
pip install -e cl_datasets/

Note: Please use Python 3.8 or above.

Example

from cl_datasets import getDatasets

datasets = ['svhn','cifar10','fashion','mnist']
batchSize = 32
dataSize = (32,32)
nChannels = 3

dataloaders = getDatasets(datasets,batchSize,dataSize,nChannels)

for train_test_loaders in dataloaders:
    trainLoader,testLoader = train_test_loaders
    ...

List of possible datasets for training tasks

Full datasets

Description Dataset string
MNIST "mnist" or "MNIST"
not-MNIST "notMnist" or "notMNIST"
Fashion MNIST "fashion"
SVHN "svhn"
Cifar-10 "cifar10"
Cifar-100 "cifar100"
German traffic signs "traffic"

Incremental datasets

Description Dataset string
Pairwise MNIST "mnist_xy" (e.g. "mnist_01")
Incremental Cifar-100 (10 classes per task) "cifar100_i" (e.g. "cifar100_4")
Incremental Tiny ImageNet (10 classes per task) "TIN_i" (e.g. "TIN_3")
Owner
berjaoui
Senior Research Engineer
berjaoui
RefineNet: Multi-Path Refinement Networks for High-Resolution Semantic Segmentation

Multipath RefineNet A MATLAB based framework for semantic image segmentation and general dense prediction tasks on images. This is the source code for

Guosheng Lin 575 Dec 06, 2022
MAGMA - a GPT-style multimodal model that can understand any combination of images and language

MAGMA -- Multimodal Augmentation of Generative Models through Adapter-based Finetuning Authors repo (alphabetical) Constantin (CoEich), Mayukh (Mayukh

Aleph Alpha GmbH 331 Jan 03, 2023
Ground truth data for the Optical Character Recognition of Historical Classical Commentaries.

OCR Ground Truth for Historical Commentaries The dataset OCR ground truth for historical commentaries (GT4HistComment) was created from the public dom

Ajax Multi-Commentary 3 Sep 08, 2022
YOLOv5🚀 reproduction by Guo Quanhao using PaddlePaddle

YOLOv5-Paddle YOLOv5 🚀 reproduction by Guo Quanhao using PaddlePaddle 支持AutoBatch 支持AutoAnchor 支持GPU Memory 快速开始 使用AIStudio高性能环境快速构建YOLOv5训练(PaddlePa

QuanHao Guo 20 Nov 14, 2022
PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

PyTorch implementation of Decoupling Value and Policy for Generalization in Reinforcement Learning

48 Dec 08, 2022
Implementation of QuickDraw - an online game developed by Google, combined with AirGesture - a simple gesture recognition application

QuickDraw - AirGesture Introduction Here is my python source code for QuickDraw - an online game developed by google, combined with AirGesture - a sim

Viet Nguyen 89 Dec 18, 2022
Users can free try their models on SIDD dataset based on this code

SIDD benchmark 1 Train python train.py If you want to train your network, just modify the yaml in the options folder. 2 Validation python validation.p

Yuzhi ZHAO 2 May 20, 2022
Plug-n-Play Reinforcement Learning in Python with OpenAI Gym and JAX

coax is built on top of JAX, but it doesn't have an explicit dependence on the jax python package. The reason is that your version of jaxlib will depend on your CUDA version.

128 Dec 27, 2022
NLP From Scratch Without Large-Scale Pretraining: A Simple and Efficient Framework

NLP From Scratch Without Large-Scale Pretraining This repository contains the code, pre-trained model checkpoints and curated datasets for our paper:

Xingcheng Yao 224 Dec 08, 2022
Red Team tool for exfiltrating files from a target's Google Drive that you have access to, via Google's API.

GD-Thief Red Team tool for exfiltrating files from a target's Google Drive that you(the attacker) has access to, via the Google Drive API. This includ

Antonio Piazza 39 Dec 27, 2022
Fight Recognition from Still Images in the Wild @ WACVW2022, Real-world Surveillance Workshop

Fight Detection from Still Images in the Wild Detecting fights from still images is an important task required to limit the distribution of social med

Şeymanur Aktı 10 Nov 09, 2022
General purpose Slater-Koster tight-binding code for electronic structure calculations

tight-binder Introduction General purpose tight-binding code for electronic structure calculations based on the Slater-Koster approximation. The code

9 Dec 15, 2022
Using pretrained language models for biomedical knowledge graph completion.

LMs for biomedical KG completion This repository contains code to run the experiments described in: Scientific Language Models for Biomedical Knowledg

Rahul Nadkarni 41 Nov 30, 2022
Get started learning C# with C# notebooks powered by .NET Interactive and VS Code.

.NET Interactive Notebooks for C# Welcome to the home of .NET interactive notebooks for C#! How to Install Download the .NET Coding Pack for VS Code f

.NET Platform 425 Dec 25, 2022
Earth Vision Foundation

EVer - A Library for Earth Vision Researcher EVer is a Pytorch-based Python library to simplify the training and inference of the deep learning model.

Zhuo Zheng 34 Nov 26, 2022
A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook format ready to run in Google Colaboratory

Awesome Machine Learning Jupyter Notebooks for Google Colaboratory A curated list of Machine Learning and Deep Learning tutorials in Jupyter Notebook

Carlos Toxtli 245 Jan 01, 2023
A super lightweight Lagrangian model for calculating millions of trajectories using ERA5 data

Easy-ERA5-Trck Easy-ERA5-Trck Galleries Install Usage Repository Structure Module Files Version iteration Easy-ERA5-Trck is a super lightweight Lagran

Zhenning Li 26 Nov 19, 2022
Differentiable Optimizers with Perturbations in Pytorch

Differentiable Optimizers with Perturbations in PyTorch This contains a PyTorch implementation of Differentiable Optimizers with Perturbations in Tens

Jake Tuero 54 Jun 22, 2022
Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions

Image-Adaptive YOLO for Object Detection in Adverse Weather Conditions Accepted by AAAI 2022 [arxiv] Wenyu Liu, Gaofeng Ren, Runsheng Yu, Shi Guo, Jia

liuwenyu 245 Dec 16, 2022
The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch Railway

Openspoor The openspoor package is intended to allow easy transformation between different geographical and topological systems commonly used in Dutch

7 Aug 22, 2022