This project aims to explore the deployment of Swin-Transformer based on TensorRT, including the test results of FP16 and INT8.

Overview

Swin Transformer

This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8.

Introduction(Quoted from the Original Project )

Swin Transformer original github repo (the name Swin stands for Shifted window) is initially described in arxiv, which capably serves as a general-purpose backbone for computer vision. It is basically a hierarchical Transformer whose representation is computed with shifted windows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection.

Setup

  1. Please refer to the Install session for conda environment build.
  2. Please refer to the Data preparation session to prepare Imagenet-1K.
  3. Install the TensorRT, now we choose the TensorRT 8.2 GA(8.2.1.8) as the test version.

Code Structure

Focus on the modifications and additions.

.
├── export.py                  # Export the PyTorch model to ONNX format
├── get_started.md            
├── main.py
├── models
│   ├── build.py
│   ├── __init__.py
│   ├── swin_mlp.py
│   └── swin_transformer.py    # Build the model, modified to export the onnx and build the TensorRT engine
├── README.md
├── trt                        # Directory for TensorRT's engine evaluation and visualization.
│   ├── engine.py
│   ├── eval_trt.py            # Evaluate the tensorRT engine's accuary.
│   ├── onnxrt_eval.py         # Run the onnx model, generate the results, just for debugging
├── utils.py
└── weights

Export to ONNX and Build TensorRT Engine

You need to pay attention to the two modification below.

  1. Exporting the operator roll to ONNX opset version 9 is not supported. A: Please refer to torch/onnx/symbolic_opset9.py, add the support of exporting torch.roll.

  2. Node (Concat_264) Op (Concat) [ShapeInferenceError] All inputs to Concat must have same rank.
    A: Please refer to the modifications in models/swin_transformer.py. We use the input_resolution and window_size to compute the nW.

       if mask is not None:
         nW = int(self.input_resolution[0]*self.input_resolution[1]/self.window_size[0]/self.window_size[1])
         #nW = mask.shape[0]
         #print('nW: ', nW)
         attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
         attn = attn.view(-1, self.num_heads, N, N)
         attn = self.softmax(attn)

Accuray Test Results on ImageNet-1K Validation Dataset

  1. Download the Swin-T pretrained model from Model Zoo. Evaluate the accuracy of the Pytorch pretrained model.

    $ python -m torch.distributed.launch --nproc_per_node 1 --master_port 12345 main.py --eval --cfg configs/swin_tiny_patch4_window7_224.yaml --resume ./weights/swin_tiny_patch4_window7_224.pth --data-path ../imagenet_1k
  2. export.py exports a pytorch model to onnx format.

    $ python export.py --eval --cfg configs/swin_tiny_patch4_window7_224.yaml --resume ./weights/swin_tiny_patch4_window7_224.pth --data-path ../imagenet_1k --batch-size 16
  3. Build the TensorRT engine using trtexec.

    $ trtexec --onnx=./weights/swin_tiny_patch4_window7_224.onnx --buildOnly --verbose --saveEngine=./weights/swin_tiny_patch4_window7_224_batch16.engine --workspace=4096

    Add the --fp16 or --best tag to build the corresponding fp16 or int8 model. Take fp16 as an example.

    $ trtexec --onnx=./weights/swin_tiny_patch4_window7_224.onnx --buildOnly --verbose --fp16 --saveEngine=./weights/swin_tiny_patch4_window7_224_batch16_fp16.engine --workspace=4096

    You can use the trtexec to test the throughput of the TensorRT engine.

    $ trtexec --loadEngine=./weights/swin_tiny_patch4_window7_224_batch16.engine
  4. trt/eval_trt.py aims to evalute the accuracy of the TensorRT engine.

$ python trt/eval_trt.py --eval --cfg configs/swin_tiny_patch4_window7_224.yaml --resume ./weights/swin_tiny_patch4_window7_224_batch16.engine --data-path ../imagenet_1k --batch-size 16
  1. trt/onnxrt_eval.py aims to evalute the accuracy of the Onnx model, just for debug.
    $ python trt/onnxrt_eval.py --eval --cfg configs/swin_tiny_patch4_window7_224.yaml --resume ./weights/swin_tiny_patch4_window7_224.onnx --data-path ../imagenet_1k --batch-size 16
SwinTransformer(T4) [email protected] Notes
PyTorch Pretrained Model 81.160
TensorRT Engine(FP32) 81.156
TensorRT Engine(FP16) - TensorRT 8.0.3.4: 81.156% vs TensorRT 8.2.1.8: 72.768%

Notes: Reported a nvbug for the FP16 accuracy issue, please refer to nvbug 3464358.

Speed Test of TensorRT engine(T4)

SwinTransformer(T4) FP32 FP16 INT8
batchsize=1 245.388 qps 510.072 qps 514.707 qps
batchsize=16 316.8624 qps 804.112 qps 804.1072 qps
batchsize=64 329.13984 qps 833.4208 qps 849.5168 qps
batchsize=256 331.9808 qps 844.10752 qps 840.33024 qps

Analysis: Compared with FP16, INT8 does not speed up at present. The main reason is that, for the Transformer structure, most of the calculations are processed by Myelin. Currently Myelin does not support the PTQ path, so the current test results are expected.
Attached the int8 and fp16 engine layer information with batchsize=128 on T4.

Build with int8 precision:

[12/04/2021-06:34:17] [V] [TRT] Engine Layer Information:
Layer(Reformat): Reformatting CopyNode for Input Tensor 0 to Conv_0, Tactic: 0, input_0[Float(128,3,224,224)] -> Reformatted Input Tensor 0 to Conv_0[Int8(128,3,224,224)]
Layer(CaskConvolution): Conv_0, Tactic: 1025026069226666066, Reformatted Input Tensor 0 to Conv_0[Int8(128,3,224,224)] -> 191[Int8(128,96,56,56)]
Layer(Reformat): Reformatting CopyNode for Input Tensor 0 to {ForeignNode[318...Transpose_2125 + Flatten_2127 + (Unnamed Layer* 4178) [Shuffle]]}, Tactic: 0, 191[Int8(128,96,56,56)] -> Reformatted Input Tensor 0 to {ForeignNode[318...Transpose_2125 + Flatten_2127 + (Unnamed Layer* 4178) [Shuffle]]}[Half(128,96,56,56)]
Layer(Myelin): {ForeignNode[318...Transpose_2125 + Flatten_2127 + (Unnamed Layer* 4178) [Shuffle]]}, Tactic: 0, Reformatted Input Tensor 0 to {ForeignNode[318...Transpose_2125 + Flatten_2127 + (Unnamed Layer* 4178) [Shuffle]]}[Half(128,96,56,56)] -> (Unnamed Layer* 4178) [Shuffle]_output[Half(128,768,1,1)]
Layer(CaskConvolution): Gemm_2128, Tactic: -1838109259315759592, (Unnamed Layer* 4178) [Shuffle]_output[Half(128,768,1,1)] -> (Unnamed Layer* 4179) [Fully Connected]_output[Half(128,1000,1,1)]
Layer(Reformat): Reformatting CopyNode for Input Tensor 0 to (Unnamed Layer* 4183) [Shuffle], Tactic: 0, (Unnamed Layer* 4179) [Fully Connected]_output[Half(128,1000,1,1)] -> Reformatted Input Tensor 0 to (Unnamed Layer* 4183) [Shuffle][Float(128,1000,1,1)]
Layer(NoOp): (Unnamed Layer* 4183) [Shuffle], Tactic: 0, Reformatted Input Tensor 0 to (Unnamed Layer* 4183) [Shuffle][Float(128,1000,1,1)] -> output_0[Float(128,1000)]

Build with fp16 precision:

[12/04/2021-06:44:31] [V] [TRT] Engine Layer Information:
Layer(Reformat): Reformatting CopyNode for Input Tensor 0 to Conv_0, Tactic: 0, input_0[Float(128,3,224,224)] -> Reformatted Input Tensor 0 to Conv_0[Half(128,3,224,224)]
Layer(CaskConvolution): Conv_0, Tactic: 1579845938601132607, Reformatted Input Tensor 0 to Conv_0[Half(128,3,224,224)] -> 191[Half(128,96,56,56)]
Layer(Myelin): {ForeignNode[318...(Unnamed Layer* 4183) [Shuffle]]}, Tactic: 0, 191[Half(128,96,56,56)] -> Reformatted Output Tensor 0 to {ForeignNode[318...(Unnamed Layer* 4183) [Shuffle]]}[Half(128,1000)]
Layer(Reformat): Reformatting CopyNode for Output Tensor 0 to {ForeignNode[318...(Unnamed Layer* 4183) [Shuffle]]}, Tactic: 0, Reformatted Output Tensor 0 to {ForeignNode[318...(Unnamed Layer* 4183) [Shuffle]]}[Half(128,1000)] -> output_0[Float(128,1000)]

Todo

After the FP16 nvbug 3464358 solved, will do the QAT optimization.

Owner
maggiez
maggiez
maggiez
Face Detection & Age Gender & Expression & Recognition

Face Detection & Age Gender & Expression & Recognition

Sajjad Ayobi 188 Dec 28, 2022
Official PyTorch implementation of the paper "TEMOS: Generating diverse human motions from textual descriptions"

TEMOS: TExt to MOtionS Generating diverse human motions from textual descriptions Description Official PyTorch implementation of the paper "TEMOS: Gen

Mathis Petrovich 187 Dec 27, 2022
Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Graph-to-3D This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arx

Helisa Dhamo 33 Jan 06, 2023
Earth Vision Foundation

EVer - A Library for Earth Vision Researcher EVer is a Pytorch-based Python library to simplify the training and inference of the deep learning model.

Zhuo Zheng 34 Nov 26, 2022
Reproduction process of AlexNet

PaddlePaddle论文复现杂谈 背景 注:该repo基于PaddlePaddle,对AlexNet进行复现。时间仓促,难免有所疏漏,如果问题或者想法,欢迎随时提issue一块交流。 飞桨论文复现赛地址:https://aistudio.baidu.com/aistudio/competitio

19 Nov 29, 2022
📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

📚 A collection of all the Deep Learning Metrics that I came across which are not accuracy/loss.

Rahul Vigneswaran 1 Jan 17, 2022
LegoDNN: a block-grained scaling tool for mobile vision systems

Table of contents 1 Introduction 1.1 Major features 1.2 Architecture 2 Code and Installation 2.1 Code 2.2 Installation 3 Repository of DNNs in vision

41 Dec 24, 2022
Run PowerShell command without invoking powershell.exe

PowerLessShell PowerLessShell rely on MSBuild.exe to remotely execute PowerShell scripts and commands without spawning powershell.exe. You can also ex

Mr.Un1k0d3r 1.2k Jan 03, 2023
A gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor.

OpenHands OpenHands is a gesture recognition system powered by OpenPose, k-nearest neighbours, and local outlier factor. Currently the system can iden

Paul Treanor 12 Jan 10, 2022
Machine Learning Privacy Meter: A tool to quantify the privacy risks of machine learning models with respect to inference attacks, notably membership inference attacks

ML Privacy Meter Machine learning is playing a central role in automated decision making in a wide range of organization and service providers. The da

Data Privacy and Trustworthy Machine Learning Research Lab 357 Jan 06, 2023
DetCo: Unsupervised Contrastive Learning for Object Detection

DetCo: Unsupervised Contrastive Learning for Object Detection arxiv link News Sparse RCNN+DetCo improves from 45.0 AP to 46.5 AP(+1.5) with 3x+ms trai

Enze Xie 234 Dec 18, 2022
Unifying Global-Local Representations in Salient Object Detection with Transformer

GLSTR (Global-Local Saliency Transformer) This is the official implementation of paper "Unifying Global-Local Representations in Salient Object Detect

11 Aug 24, 2022
AI-based, context-driven network device ranking

Batea A batea is a large shallow pan of wood or iron traditionally used by gold prospectors for washing sand and gravel to recover gold nuggets. Batea

Secureworks Taegis VDR 269 Nov 26, 2022
Python program that works as a contact list

Lista de Contatos Programa em Python que funciona como uma lista de contatos. Features Adicionar novo contato Remover contato Atualizar contato Pesqui

Victor B. Lino 3 Dec 16, 2021
NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models

NaturalCC NaturalCC is a sequence modeling toolkit that allows researchers and developers to train custom models for many software engineering tasks,

159 Dec 28, 2022
Code for "Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification", ECCV 2020 Spotlight

Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification Implementation of "Learning From Multiple Experts: Se

27 Nov 05, 2022
Image Classification - A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

0 Jan 23, 2022
A module that used for encrypt code which includes RSA and AES

软件加密模块 requirement: Crypto,pycryptodome,pyqt5 本地加密信息为随机字符串 使用说明 命令行参数 -h 帮助 -checkWorking 检查是否能正常工作,后接1确认指令 -checkEndDate 检查截至日期,后接1确认指令 -activateCode

2 Sep 27, 2022
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

258 Dec 29, 2022
DanceTrack: Multiple Object Tracking in Uniform Appearance and Diverse Motion

DanceTrack DanceTrack is a benchmark for tracking multiple objects in uniform appearance and diverse motion. DanceTrack provides box and identity anno

260 Dec 28, 2022