Swin Transformer
This project aims to explore the deployment of SwinTransformer based on TensorRT, including the test results of FP16 and INT8.
Introduction(Quoted from the Original Project )
Swin Transformer original github repo (the name Swin
stands for Shifted window) is initially described in arxiv, which capably serves as a general-purpose backbone for computer vision. It is basically a hierarchical Transformer whose representation is computed with shifted windows. The shifted windowing scheme brings greater efficiency by limiting self-attention computation to non-overlapping local windows while also allowing for cross-window connection.
Setup
- Please refer to the Install session for conda environment build.
- Please refer to the Data preparation session to prepare Imagenet-1K.
- Install the TensorRT, now we choose the TensorRT 8.2 GA(8.2.1.8) as the test version.
Code Structure
Focus on the modifications and additions.
.
├── export.py # Export the PyTorch model to ONNX format
├── get_started.md
├── main.py
├── models
│ ├── build.py
│ ├── __init__.py
│ ├── swin_mlp.py
│ └── swin_transformer.py # Build the model, modified to export the onnx and build the TensorRT engine
├── README.md
├── trt # Directory for TensorRT's engine evaluation and visualization.
│ ├── engine.py
│ ├── eval_trt.py # Evaluate the tensorRT engine's accuary.
│ ├── onnxrt_eval.py # Run the onnx model, generate the results, just for debugging
├── utils.py
└── weights
Export to ONNX and Build TensorRT Engine
You need to pay attention to the two modification below.
-
Exporting the operator roll to ONNX opset version 9 is not supported. A: Please refer to torch/onnx/symbolic_opset9.py, add the support of exporting torch.roll.
-
Node (Concat_264) Op (Concat) [ShapeInferenceError] All inputs to Concat must have same rank.
A: Please refer to the modifications inmodels/swin_transformer.py
. We use the input_resolution and window_size to compute the nW.if mask is not None: nW = int(self.input_resolution[0]*self.input_resolution[1]/self.window_size[0]/self.window_size[1]) #nW = mask.shape[0] #print('nW: ', nW) attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0) attn = attn.view(-1, self.num_heads, N, N) attn = self.softmax(attn)
Accuray Test Results on ImageNet-1K Validation Dataset
-
Download the
Swin-T
pretrained model from Model Zoo. Evaluate the accuracy of the Pytorch pretrained model.$ python -m torch.distributed.launch --nproc_per_node 1 --master_port 12345 main.py --eval --cfg configs/swin_tiny_patch4_window7_224.yaml --resume ./weights/swin_tiny_patch4_window7_224.pth --data-path ../imagenet_1k
-
export.py
exports a pytorch model to onnx format.$ python export.py --eval --cfg configs/swin_tiny_patch4_window7_224.yaml --resume ./weights/swin_tiny_patch4_window7_224.pth --data-path ../imagenet_1k --batch-size 16
-
Build the TensorRT engine using
trtexec
.$ trtexec --onnx=./weights/swin_tiny_patch4_window7_224.onnx --buildOnly --verbose --saveEngine=./weights/swin_tiny_patch4_window7_224_batch16.engine --workspace=4096
Add the --fp16 or --best tag to build the corresponding fp16 or int8 model. Take fp16 as an example.
$ trtexec --onnx=./weights/swin_tiny_patch4_window7_224.onnx --buildOnly --verbose --fp16 --saveEngine=./weights/swin_tiny_patch4_window7_224_batch16_fp16.engine --workspace=4096
You can use the
trtexec
to test the throughput of the TensorRT engine.$ trtexec --loadEngine=./weights/swin_tiny_patch4_window7_224_batch16.engine
-
trt/eval_trt.py
aims to evalute the accuracy of the TensorRT engine.
$ python trt/eval_trt.py --eval --cfg configs/swin_tiny_patch4_window7_224.yaml --resume ./weights/swin_tiny_patch4_window7_224_batch16.engine --data-path ../imagenet_1k --batch-size 16
trt/onnxrt_eval.py
aims to evalute the accuracy of the Onnx model, just for debug.$ python trt/onnxrt_eval.py --eval --cfg configs/swin_tiny_patch4_window7_224.yaml --resume ./weights/swin_tiny_patch4_window7_224.onnx --data-path ../imagenet_1k --batch-size 16
SwinTransformer(T4) | [email protected] | Notes |
---|---|---|
PyTorch Pretrained Model | 81.160 | |
TensorRT Engine(FP32) | 81.156 | |
TensorRT Engine(FP16) | - | TensorRT 8.0.3.4: 81.156% vs TensorRT 8.2.1.8: 72.768% |
Notes: Reported a nvbug for the FP16 accuracy issue, please refer to nvbug 3464358.
Speed Test of TensorRT engine(T4)
SwinTransformer(T4) | FP32 | FP16 | INT8 |
---|---|---|---|
batchsize=1 | 245.388 qps | 510.072 qps | 514.707 qps |
batchsize=16 | 316.8624 qps | 804.112 qps | 804.1072 qps |
batchsize=64 | 329.13984 qps | 833.4208 qps | 849.5168 qps |
batchsize=256 | 331.9808 qps | 844.10752 qps | 840.33024 qps |
Analysis: Compared with FP16, INT8 does not speed up at present. The main reason is that, for the Transformer structure, most of the calculations are processed by Myelin. Currently Myelin does not support the PTQ path, so the current test results are expected.
Attached the int8 and fp16 engine layer information with batchsize=128 on T4.
Build with int8 precision:
[12/04/2021-06:34:17] [V] [TRT] Engine Layer Information:
Layer(Reformat): Reformatting CopyNode for Input Tensor 0 to Conv_0, Tactic: 0, input_0[Float(128,3,224,224)] -> Reformatted Input Tensor 0 to Conv_0[Int8(128,3,224,224)]
Layer(CaskConvolution): Conv_0, Tactic: 1025026069226666066, Reformatted Input Tensor 0 to Conv_0[Int8(128,3,224,224)] -> 191[Int8(128,96,56,56)]
Layer(Reformat): Reformatting CopyNode for Input Tensor 0 to {ForeignNode[318...Transpose_2125 + Flatten_2127 + (Unnamed Layer* 4178) [Shuffle]]}, Tactic: 0, 191[Int8(128,96,56,56)] -> Reformatted Input Tensor 0 to {ForeignNode[318...Transpose_2125 + Flatten_2127 + (Unnamed Layer* 4178) [Shuffle]]}[Half(128,96,56,56)]
Layer(Myelin): {ForeignNode[318...Transpose_2125 + Flatten_2127 + (Unnamed Layer* 4178) [Shuffle]]}, Tactic: 0, Reformatted Input Tensor 0 to {ForeignNode[318...Transpose_2125 + Flatten_2127 + (Unnamed Layer* 4178) [Shuffle]]}[Half(128,96,56,56)] -> (Unnamed Layer* 4178) [Shuffle]_output[Half(128,768,1,1)]
Layer(CaskConvolution): Gemm_2128, Tactic: -1838109259315759592, (Unnamed Layer* 4178) [Shuffle]_output[Half(128,768,1,1)] -> (Unnamed Layer* 4179) [Fully Connected]_output[Half(128,1000,1,1)]
Layer(Reformat): Reformatting CopyNode for Input Tensor 0 to (Unnamed Layer* 4183) [Shuffle], Tactic: 0, (Unnamed Layer* 4179) [Fully Connected]_output[Half(128,1000,1,1)] -> Reformatted Input Tensor 0 to (Unnamed Layer* 4183) [Shuffle][Float(128,1000,1,1)]
Layer(NoOp): (Unnamed Layer* 4183) [Shuffle], Tactic: 0, Reformatted Input Tensor 0 to (Unnamed Layer* 4183) [Shuffle][Float(128,1000,1,1)] -> output_0[Float(128,1000)]
Build with fp16 precision:
[12/04/2021-06:44:31] [V] [TRT] Engine Layer Information:
Layer(Reformat): Reformatting CopyNode for Input Tensor 0 to Conv_0, Tactic: 0, input_0[Float(128,3,224,224)] -> Reformatted Input Tensor 0 to Conv_0[Half(128,3,224,224)]
Layer(CaskConvolution): Conv_0, Tactic: 1579845938601132607, Reformatted Input Tensor 0 to Conv_0[Half(128,3,224,224)] -> 191[Half(128,96,56,56)]
Layer(Myelin): {ForeignNode[318...(Unnamed Layer* 4183) [Shuffle]]}, Tactic: 0, 191[Half(128,96,56,56)] -> Reformatted Output Tensor 0 to {ForeignNode[318...(Unnamed Layer* 4183) [Shuffle]]}[Half(128,1000)]
Layer(Reformat): Reformatting CopyNode for Output Tensor 0 to {ForeignNode[318...(Unnamed Layer* 4183) [Shuffle]]}, Tactic: 0, Reformatted Output Tensor 0 to {ForeignNode[318...(Unnamed Layer* 4183) [Shuffle]]}[Half(128,1000)] -> output_0[Float(128,1000)]
Todo
After the FP16 nvbug 3464358 solved, will do the QAT optimization.