Reference code for the paper "Cross-Camera Convolutional Color Constancy" (ICCV 2021)

Overview

Cross-Camera Convolutional Color Constancy, ICCV 2021 (Oral)

Mahmoud Afifi1,2, Jonathan T. Barron2, Chloe LeGendre2, Yun-Ta Tsai2, and Francois Bleibel2

1York University   2Google Research

Paper | Poster | PPT | Video

C5_teaser

Reference code for the paper Cross-Camera Convolutional Color Constancy. Mahmoud Afifi, Jonathan T. Barron, Chloe LeGendre, Yun-Ta Tsai, and Francois Bleibel. In ICCV, 2021. If you use this code, please cite our paper:

@InProceedings{C5,
  title={Cross-Camera Convolutional Color Constancy},
  author={Afifi, Mahmoud and Barron, Jonathan T and LeGendre, Chloe and Tsai, Yun-Ta and Bleibel, Francois},
  booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
  year={2021}
}

C5_figure

Code

Prerequisite

  • Pytorch
  • opencv-python
  • tqdm

Training

To train C5, training/validation data should have the following formatting:

- train_folder/
       | image1_sensorname_camera1.png
       | image1_sensorname_camera1_metadata.json
       | image2_sensorname_camera1.png
       | image2_sensorname_camera1_metadata.json
       ...
       | image1_sensorname_camera2.png
       | image1_sensorname_camera2_metadata.json
       ...

In src/ops.py, the function add_camera_name(dataset_dir) can be used to rename image filenames and corresponding ground-truth JSON files. Each JSON file should include a key named either illuminant_color_raw or gt_ill that has the ground-truth illuminant color of the corresponding image.

The training code is given in train.py. The following parameters are required to set model configuration and training data information.

  • --data-num: the number of images used for each inference (additional images + input query image). This was mentioned in the main paper as m.
  • --input-size: number of histogram bins.
  • --learn-G: to use a G multiplier as explained in the paper.
  • --training-dir-in: training image directory.
  • --validation-dir-in: validation image directory; when this variable is None (default), the validation set will be taken from the training data based on the --validation-ratio.
  • --validation-ratio: when --validation-dir-in is None, this argument determines the validation set ratio of the image set in --training-dir-in directory.
  • --augmentation-dir: directory(s) of augmentation data (optional).
  • --model-name: name of the trained model.

The following parameters are useful to control training settings and hyperparameters:

  • --epochs: number of epochs
  • --batch-size: batch size
  • --load-hist: to load histogram if pre-computed (recommended).
  • -optimizer: optimization algorithm for stochastic gradient descent; options are: Adam or SGD.
  • --learning-rate: Learning rate
  • --l2reg: L2 regularization factor
  • --load: to load C5 model from a .pth file; default is False
  • --model-location: when --load is True, this variable should point to the fullpath of the .pth model file.
  • --validation-frequency: validation frequency (in epochs).
  • --cross-validation: To use three-fold cross-validation. When this variable is True, --validation-dir-in and --validation-ratio will be ignored and 3-fold cross-validation, on the data provided in the --training-dir-in, will be applied.
  • --gpu: GPU device ID.
  • --smoothness-factor-*: smoothness loss factor of the following model components: F (conv filter), B (bias), G (multiplier layer). For example, --smoothness-factor-F can be used to set the smoothness loss for the conv filter.
  • --increasing-batch-size: for increasing batch size during training.
  • --grad-clip-value: gradient clipping value; if it's set to 0 (default), no clipping is applied.

Testing

To test a pre-trained C5 model, testing data should have the following formatting:

- test_folder/
       | image1_sensorname_camera1.png
       | image1_sensorname_camera1_metadata.json
       | image2_sensorname_camera1.png
       | image2_sensorname_camera1_metadata.json
       ...
       | image1_sensorname_camera2.png
       | image1_sensorname_camera2_metadata.json
       ...

The testing code is given in test.py. The following parameters are required to set model configuration and testing data information.

  • --model-name: name of the trained model.
  • --data-num: the number of images used for each inference (additional images + input query image). This was mentioned in the main paper as m.
  • --input-size: number of histogram bins.
  • --g-multiplier: to use a G multiplier as explained in the paper.
  • --testing-dir-in: testing image directory.
  • --batch-size: batch size
  • --load-hist: to load histogram if pre-computed (recommended).
  • --multiple_test: to apply multiple tests (ten as mentioned in the paper) and save their results.
  • --white-balance: to save white-balanced testing images.
  • --cross-validation: to use three-fold cross-validation. When it is set to True, it is supposed to have three pre-trained models saved with a postfix of the fold number. The testing image filenames should be listed in .npy files located in the folds directory with the same name of the dataset, which should be the same as the folder name in --testing-dir-in.
  • --gpu: GPU device ID.

In the images directory, there are few examples captured by Mobile Sony IMX135 from the INTEL-TAU dataset. To white balance these raw images, as shown in the figure below, using a C5 model (trained on DSLR cameras from NUS and Gehler-Shi datasets), use the following command:

python test.py --testing-dir-in ./images --white-balance True --model-name C5_m_7_h_64

c5_examples

To test with the gain multiplie, use the following command:

python test.py --testing-dir-in ./images --white-balance True --g-multiplier True --model-name C5_m_7_h_64_w_G

Note that in testing, C5 does not require any metadata. The testing code only uses JSON files to load ground-truth illumination for comparisons with our estimated values.

Data augmentation

The raw-to-raw augmentation functions are provided in src/aug_ops.opy. Call the set_sampling_params function to set sampling parameters (e.g., excluding certain camera/dataset from the soruce set, determine the number of augmented images, etc.). Then, call the map_raw_images function to generate a new augmentation set with the determined parameters. The function map_raw_images takes four arguments:

  • xyz_img_dir: directory of XYZ images; you can download the CIE XYZ images from here. All images were transformed to the CIE XYZ space after applying the black-level normalization and masking out the calibration object (i.e., the color rendition chart or SpyderCUBE).
  • target_cameras: a list of one or more of the following camera models: Canon EOS 550D, Canon EOS 5D, Canon EOS-1DS, Canon EOS-1Ds Mark III, Fujifilm X-M1, Nikon D40, Nikon D5200, Olympus E-PL6, Panasonic DMC-GX1, Samsung NX2000, Sony SLT-A57, or All.
  • output_dir: output directory to save the augmented images and their metadata files.
  • params: sampling parameters set by the set_sampling_params function.
Owner
Mahmoud Afifi
Mahmoud Afifi
TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition

TGRNet: A Table Graph Reconstruction Network for Table Structure Recognition Xue, Wenyuan, et al. "TGRNet: A Table Graph Reconstruction Network for Ta

Wenyuan 68 Jan 04, 2023
An auto discord account and token generator. Automatically verifies the phone number. Works without proxy. Bypasses captcha.

JOIN DISCORD SERVER https://discord.gg/uAc3agBY FREE HCAPTCHA SOLVING API Discord-Token-Gen An auto discord token generator. Auto verifies phone numbe

3kp 271 Jan 01, 2023
Bootstrapped Representation Learning on Graphs

Bootstrapped Representation Learning on Graphs This is the PyTorch implementation of BGRL Bootstrapped Representation Learning on Graphs The main scri

NerDS Lab :: Neural Data Science Lab 55 Jan 07, 2023
Source code for the plant extraction workflow introduced in the paper “Agricultural Plant Cataloging and Establishment of a Data Framework from UAV-based Crop Images by Computer Vision”

Plant extraction workflow Source code for the plant extraction workflow introduced in the paper "Agricultural Plant Cataloging and Establishment of a

Maurice Günder 0 Apr 22, 2022
StorSeismic: An approach to pre-train a neural network to store seismic data features

StorSeismic: An approach to pre-train a neural network to store seismic data features This repository contains codes and resources to reproduce experi

Seismic Wave Analysis Group 11 Dec 05, 2022
使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,包含C++和Python两种版本的程序实现。本套程序只依赖opencv库就可以运行, 从而彻底摆脱对任何深度学习框架的依赖。

YOLOP-opencv-dnn 使用OpenCV部署全景驾驶感知网络YOLOP,可同时处理交通目标检测、可驾驶区域分割、车道线检测,三项视觉感知任务,依然是包含C++和Python两种版本的程序实现 onnx文件从百度云盘下载,链接:https://pan.baidu.com/s/1A_9cldU

178 Jan 07, 2023
Code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty

Deep Deterministic Uncertainty This repository contains the code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic

Jishnu Mukhoti 69 Nov 28, 2022
To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beginners, intermediates as well as experts

JaxTon 💯 JAX exercises Mission 🚀 To provide 100 JAX exercises over different sections structured as a course or tutorials to teach and learn for beg

Rohan Rao 512 Jan 01, 2023
⚖️🔁🔮🕵️‍♂️🦹🖼️ Code for *Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances* paper.

Measuring the Contribution of Multiple Model Representations in Detecting Adversarial Instances This repository contains the code for Measuring the Co

Daniel Steinberg 0 Nov 06, 2022
Newt - a Gaussian process library in JAX.

Newt __ \/_ (' \`\ _\, \ \\/ /`\/\ \\ \ \\

AaltoML 0 Nov 02, 2021
Python periodic table module

elemenpy Hello! elements.py is a small Python periodic table module that is used for calling certain information about an element. Installation Instal

Eric Cheng 2 Dec 27, 2021
Rapid experimentation and scaling of deep learning models on molecular and crystal graphs.

LitMatter A template for rapid experimentation and scaling deep learning models on molecular and crystal graphs. How to use Clone this repository and

Nathan Frey 32 Dec 06, 2022
Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Mozhdeh Gheini 16 Jul 16, 2022
Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer Paper on arXiv Public PyTorch implementation of two-stage peer-reg

NNAISENSE 38 Oct 14, 2022
AI-Fitness-Tracker - AI Fitness Tracker With Python

AI-Fitness-Tracker We have build a AI based Fitness Tracker using OpenCV and Pyt

Sharvari Mangale 5 Feb 09, 2022
Extremely simple and fast extreme multi-class and multi-label classifiers.

napkinXC napkinXC is an extremely simple and fast library for extreme multi-class and multi-label classification, that focus of implementing various m

Marek Wydmuch 43 Nov 14, 2022
Utilities to bridge Canvas-generated course rosters with GitLab's API.

gitlab-canvas-utils A collection of scripts originally written for CSE 13S. Oversees everything from GitLab course group creation, student repository

Eugene Chou 5 Jun 08, 2022
BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition 2022)

BADet: Boundary-Aware 3D Object Detection from Point Clouds (Pattern Recognition

Rui Qian 17 Dec 12, 2022
TensorFlow implementation of PHM (Parameterization of Hypercomplex Multiplication)

Parameterization of Hypercomplex Multiplications (PHM) This repository contains the TensorFlow implementation of PHM (Parameterization of Hypercomplex

Aston Zhang 9 Oct 26, 2022
An example showing how to use jax to train resnet50 on multi-node multi-GPU

jax-multi-gpu-resnet50-example This repo shows how to use jax for multi-node multi-GPU training. The example is adapted from the resnet50 example in d

Yangzihao Wang 20 Jul 04, 2022