AISTATS 2019: Confidence-based Graph Convolutional Networks for Semi-Supervised Learning

Overview

Confidence-based Graph Convolutional Networks for Semi-Supervised Learning

Source code for AISTATS 2019 paper: Confidence-based Graph Convolutional Networks for Semi-Supervised Learning.

Label prediction on node a by Kipf-GCN and ConfGCN (this paper). L0 is a’s true label. Shade intensity of a node reflects the estimated score of label L1 assigned to that node. Since Kipf-GCN is not capable of estimating influence of one node on another, it is misled by the dominant label L1 in node a’s neighborhood and thereby making the wrong assignment. ConfGCN, on the other hand, estimates confidences (shown by bars) over the label scores, and uses them to increase influence of nodes b and c to estimate the right label on a. Please refer to paper for more details.

Dependencies

  • Compatible with TensorFlow 1.x and Python 3.x.
  • Dependencies can be installed using requirements.txt.

Dataset:

  • We use citation network datasets: Cora, Citeseer, Pubmed, and CoraML for evaluation in our paper.
  • Cora, Citeseer, and Pubmed datasets was taken directly from here. CoraML dataset was taken from here and was placed in the same format as other datasets for semi-supervised settings.
  • data.zip contains all the datasets in the required format.

Evaluate pretrained model:

  • Run setup.sh for setting up the environment and extracting the datasets and pre-trained models.
  • confgcn.py contains TensorFlow (1.x) based implementation of ConfGCN (proposed method).
  • Execute evaluate.sh for evaluating pre-trained ConfGCN model on all four datasets.

Training from scratch:

  • Execute setup.sh for setting up the environment and extracting datasets.

  • config/hyperparams.jsoncontains the best parameters for all four datasets.

  • For training ConfGCN run:

    python conf_gcn.py -data citeseer -name new_run

Citation

Please cite us if you use this code.

@InProceedings{vashishth19a,
  title = 	 {Confidence-based Graph Convolutional Networks for Semi-Supervised Learning},
  author = 	 {Vashishth, Shikhar and Yadav, Prateek and Bhandari, Manik and Talukdar, Partha},
  booktitle = 	 {Proceedings of Machine Learning Research},
  pages = 	 {1792--1801},
  year = 	 {2019},
  editor = 	 {Chaudhuri, Kamalika and Sugiyama, Masashi},
  volume = 	 {89},
  series = 	 {Proceedings of Machine Learning Research},
  address = 	 {},
  month = 	 {16--18 Apr},
  publisher = 	 {PMLR},
  pdf = 	 {http://proceedings.mlr.press/v89/vashishth19a/vashishth19a.pdf},
  url = 	 {http://proceedings.mlr.press/v89/vashishth19a.html}
}

For any clarification, comments, or suggestions please create an issue or contact [email protected].

Owner
MALL Lab (IISc)
MALL Lab (IISc)
Official Pytorch implementation of Online Continual Learning on Class Incremental Blurry Task Configuration with Anytime Inference (ICLR 2022)

The Official Implementation of CLIB (Continual Learning for i-Blurry) Online Continual Learning on Class Incremental Blurry Task Configuration with An

NAVER AI 34 Oct 26, 2022
Only works with the dashboard version / branch of jesse

Jesse optuna Only works with the dashboard version / branch of jesse. The config.yml should be self-explainatory. Installation # install from git pip

Markus K. 8 Dec 04, 2022
ERISHA is a mulitilingual multispeaker expressive speech synthesis framework. It can transfer the expressivity to the speaker's voice for which no expressive speech corpus is available.

ERISHA: Multilingual Multispeaker Expressive Text-to-Speech Library ERISHA is a multilingual multispeaker expressive speech synthesis framework. It ca

Ajinkya Kulkarni 43 Nov 27, 2022
OpenL3: Open-source deep audio and image embeddings

OpenL3 OpenL3 is an open-source Python library for computing deep audio and image embeddings. Please refer to the documentation for detailed instructi

Music and Audio Research Laboratory - NYU 326 Jan 02, 2023
Gauge equivariant mesh cnn

Geometric Mesh CNN The code in this repository is an implementation of the Gauge Equivariant Mesh CNN introduced in the paper Gauge Equivariant Mesh C

50 Dec 18, 2022
Code base for the paper "Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation"

This repository contains code for the paper Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiati

8 Aug 28, 2022
PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning"

PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning".

Berivan Isik 8 Dec 08, 2022
Awesome Monocular 3D detection

Awesome Monocular 3D detection Paper list of 3D detetction, keep updating! Contents Paper List 2022 2021 2020 2019 2018 2017 2016 KITTI Results Paper

Zhikang Zou 184 Jan 04, 2023
Code release for the paper “Worldsheet Wrapping the World in a 3D Sheet for View Synthesis from a Single Image”, ICCV 2021.

Worldsheet: Wrapping the World in a 3D Sheet for View Synthesis from a Single Image This repository contains the code for the following paper: R. Hu,

Meta Research 37 Jan 04, 2023
This repository provides a basic implementation of our GCPR 2021 paper "Learning Conditional Invariance through Cycle Consistency"

Learning Conditional Invariance through Cycle Consistency This repository provides a basic TensorFlow 1 implementation of the proposed model in our GC

BMDA - University of Basel 1 Nov 04, 2022
HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021)

Code for HDR Video Reconstruction HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021) Guanying Chen, Cha

Guanying Chen 64 Nov 19, 2022
QTool: A Low-bit Quantization Toolbox for Deep Neural Networks in Computer Vision

This project provides abundant choices of quantization strategies (such as the quantization algorithms, training schedules and empirical tricks) for quantizing the deep neural networks into low-bit c

Monash Green AI Lab 51 Dec 10, 2022
Adversarial Texture Optimization from RGB-D Scans (CVPR 2020).

AdversarialTexture Adversarial Texture Optimization from RGB-D Scans (CVPR 2020). Scanning Data Download Please refer to data directory for details. B

Jingwei Huang 153 Nov 28, 2022
Code for Towards Streaming Perception (ECCV 2020) :car:

sAP — Code for Towards Streaming Perception ECCV Best Paper Honorable Mention Award Feb 2021: Announcing the Streaming Perception Challenge (CVPR 2021

Martin Li 85 Dec 22, 2022
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
The Official TensorFlow Implementation for SPatchGAN (ICCV2021)

SPatchGAN: Official TensorFlow Implementation Paper "SPatchGAN: A Statistical Feature Based Discriminator for Unsupervised Image-to-Image Translation"

39 Dec 30, 2022
TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 06, 2023
Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning, CVPR 2021

Propagate Yourself: Exploring Pixel-Level Consistency for Unsupervised Visual Representation Learning By Zhenda Xie*, Yutong Lin*, Zheng Zhang, Yue Ca

Zhenda Xie 293 Dec 20, 2022
The pytorch implementation of the paper "text-guided neural image inpainting" at MM'2020

TDANet: Text-Guided Neural Image Inpainting, MM'2020 (Oral) MM | ArXiv This repository implements the paper "Text-Guided Neural Image Inpainting" by L

LisaiZhang 75 Dec 22, 2022
Recovering Brain Structure Network Using Functional Connectivity

Recovering-Brain-Structure-Network-Using-Functional-Connectivity Framework: Papers: This repository provides a PyTorch implementation of the models ad

5 Nov 30, 2022