Data Intelligence Applications - Online Product Advertising and Pricing with Context Generation

Overview

Data Intelligence Applications - Online Product Advertising and Pricing with Context Generation

Politecnico di Milano

Overview

Consider the scenario in which advertisement is used to attract users on an ecommerce website and the users, after the purchase of the first unit of a consumable item, will buy additional units of the same item in future. The goal is to find the best joint bidding and pricing strategy taking into account future purchases.

Scenario

Imagine a consumable item (for which we have an infinite number of units) and two binary features. Imagine three classes of customers C1, C2, C3, each corresponding to a subspace of the features’ space. Each customers’ class is characterized by:

  • a stochastic number of daily clicks of new users (i.e., that have never clicked before these ads) as a function depending on the bid;
  • a stochastic cost per click as a function of the bid;
  • a conversion rate function providing the probability that a user will buy the item given a price;
  • a distribution probability over the number of times the user will come back to the ecommerce website to buy that item by 30 days after the first purchase (and simulate such visits in future).

General Problem

  • Formulate the objective function when assuming that, once a user makes a purchase with a price p, then the ecommerce will propose the same price p to future visits of the same user and this user will surely buy the item. The revenue function must take into account the cost per click, while there is no budget constraint. Provide an algorithm to find the best joint bidding/pricing strategy and describe its complexity in the number of values of the bids and prices available (assume here that the values of the parameters are known). In the following Steps, assume that the number of bid values are 10 as well as the number of price values.

Pricing (P3, P4)

  • Consider the case in which the bid is fixed and learn in online fashion the best pricing strategy when the algorithm does not discriminate among the customers’ classes (and therefore the algorithm works with aggregate data). Assume that the number of daily clicks and the daily cost per click are known. Adopt both an upper-confidence bound approach and a Thompson-sampling approach and compare their performance.

princing no seasonal

  • Do the same as the step before when instead a context-generation approach is adopted to identify the classes of customers and adopt a potentially different pricing strategy per class. In doing that, evaluate the performance of the pricing strategies in the different classes only at the optimal solution (e.g., if prices that are not optimal for two customers’ classes provide different performance, you do not split the contexts). Let us remark that no discrimination of the customers’ classes is performed at the advertising level.

princing no seasonal

Bidding (P5)

  • Consider the case in which the prices are fixed and learn in online fashion the best bidding strategy when the algorithm does not discriminate among the customers’ classes. Assume that the conversion probability is known.

princing no seasonal

Pricing & Bidding (P6, P7)

  • Consider the general case in which one needs to learn the joint pricing and bidding strategy. Do not discriminate over the customers’ classes both for advertising and pricing. Then repeat the same when instead discriminating over the customers’ classes for pricing. In doing that, adopt the context structure already discovered.

princing no seasonal

Resources

You can find all the Python files divided for each point and the .pdf of the final report:

  • The pdf file contains the presentation of the project where you can find our final plots and all the results obtained.
  • P3 and P4 contains all the files related to the Pricing Part.
  • P5 contains all the files related to the Bidding Part.
  • P6 and P7 contains all the files related to the joint Pricing and Bidding part.

Team

Owner
Manuel Bressan
MSc Student in Mathematical Engineering @ Politecnico di Milano, Statistical Learning track
Manuel Bressan
Intake is a lightweight package for finding, investigating, loading and disseminating data.

Intake: A general interface for loading data Intake is a lightweight set of tools for loading and sharing data in data science projects. Intake helps

Intake 851 Jan 01, 2023
First steps with Python in Life Sciences

First steps with Python in Life Sciences This course material is part of the "First Steps with Python in Life Science" three-day course of SIB-trainin

SIB Swiss Institute of Bioinformatics 22 Jan 08, 2023
A real-time financial data streaming pipeline and visualization platform using Apache Kafka, Cassandra, and Bokeh.

Realtime Financial Market Data Visualization and Analysis Introduction This repo shows my project about real-time stock data pipeline. All the code is

6 Sep 07, 2022
A tool to compare differences between dataframes and create a differences report in Excel

similarpanda A module to check for differences between pandas Dataframes, and generate a report in Excel format. This is helpful in a workplace settin

Andre Pretorius 9 Sep 15, 2022
Provide a market analysis (R)

market-study Provide a market analysis (R) - FRENCH Produisez une étude de marché Prérequis Pour effectuer ce projet, vous devrez maîtriser la manipul

1 Feb 13, 2022
small package with utility functions for analyzing (fly) calcium imaging data

fly2p Tools for analyzing two-photon (2p) imaging data collected with Vidrio Scanimage software and micromanger. Loading scanimage data relies on scan

Hannah Haberkern 3 Dec 14, 2022
Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

Tablexplore is an application for data analysis and plotting built in Python using the PySide2/Qt toolkit.

Damien Farrell 81 Dec 26, 2022
Fit models to your data in Python with Sherpa.

Table of Contents Sherpa License How To Install Sherpa Using Anaconda Using pip Building from source History Release History Sherpa Sherpa is a modeli

134 Jan 07, 2023
A model checker for verifying properties in epistemic models

Epistemic Model Checker This is a model checker for verifying properties in epistemic models. The goal of the model checker is to check for Pluralisti

Thomas Träff 2 Dec 22, 2021
A CLI tool to reduce the friction between data scientists by reducing git conflicts removing notebook metadata and gracefully resolving git conflicts.

databooks is a package for reducing the friction data scientists while using Jupyter notebooks, by reducing the number of git conflicts between different notebooks and assisting in the resolution of

dataroots 86 Dec 25, 2022
Using Python to scrape some basic player information from www.premierleague.com and then use Pandas to analyse said data.

PremiershipPlayerAnalysis Using Python to scrape some basic player information from www.premierleague.com and then use Pandas to analyse said data. No

5 Sep 06, 2021
A computer algebra system written in pure Python

SymPy See the AUTHORS file for the list of authors. And many more people helped on the SymPy mailing list, reported bugs, helped organize SymPy's part

SymPy 9.9k Dec 31, 2022
An experimental project I'm undertaking for the sole purpose of increasing my Python knowledge

5ePy is an experimental project I'm undertaking for the sole purpose of increasing my Python knowledge. #Goals Goal: Create a working, albeit lightwei

Hayden Covington 1 Nov 24, 2021
bigdata_analyse 大数据分析项目

bigdata_analyse 大数据分析项目 wish 采用不同的技术栈,通过对不同行业的数据集进行分析,期望达到以下目标: 了解不同领域的业务分析指标 深化数据处理、数据分析、数据可视化能力 增加大数据批处理、流处理的实践经验 增加数据挖掘的实践经验

Way 2.4k Dec 30, 2022
Creating a statistical model to predict 10 year treasury yields

Predicting 10-Year Treasury Yields Intitially, I wanted to see if the volatility in the stock market, represented by the VIX index (data source), had

10 Oct 27, 2021
An Aspiring Drop-In Replacement for NumPy at Scale

Legate NumPy is a Legate library that aims to provide a distributed and accelerated drop-in replacement for the NumPy API on top of the Legion runtime. Using Legate NumPy you do things like run the f

Legate 502 Jan 03, 2023
Data Science Environment Setup in single line

datascienv is package that helps your to setup your environment in single line of code with all dependency and it is also include pyforest that provide single line of import all required ml libraries

Ashish Patel 55 Dec 16, 2022
Python script to automate the plotting and analysis of percentage depth dose and dose profile simulations in TOPAS.

topas-create-graphs A script to automatically plot the results of a topas simulation Works for percentage depth dose (pdd) and dose profiles (dp). Dep

Sebastian Schäfer 10 Dec 08, 2022
fds is a tool for Data Scientists made by DAGsHub to version control data and code at once.

Fast Data Science, AKA fds, is a CLI for Data Scientists to version control data and code at once, by conveniently wrapping git and dvc

DAGsHub 359 Dec 22, 2022
talkbox is a scikit for signal/speech processing, to extend scipy capabilities in that domain.

talkbox is a scikit for signal/speech processing, to extend scipy capabilities in that domain.

David Cournapeau 76 Nov 30, 2022