A visualisation tool for Deep Reinforcement Learning

Related tags

Deep Learningdrlvis
Overview

DRLVIS - Visualising Deep Reinforcement Learning


Created by Marios Sirtmatsis with the support of Alex Bäuerle.

DRLVis is an application used for visualising deep reinforcement learning. The goal is to enable developers to get a further understanding of broadly used algorithms across the deep reinforcement learning landscape. Also DRLVis shall provide a tool for researchers and developers to help them understand errors in their implemented algorithms.

Installation

  1. Install the drlvis pip package by using the following command pip install -e drlvis from the directory above the drlvis directory
  2. After that simply run drlvis --logdir @PATH_TO_LOGDIR
  3. Open your browser on http://localhost:8000

Implementation

Architecture

The application is split into a backend and a fronted, where the backend does most of the data preprocessing. The frontend provides meaningful visualisations for further understanding of what the agent is doing, how rewards, weights and actions develop over time and how confident the agent is in selecting its actions.

Workflow for using DRLVis

  1. Train agent and log data
  2. Run drlvis
  3. Interpret meaningful visualisations in your browser

Logging

Logging for the use of drlvis is done by logger.py. The file contains a documentation on which values should be passed for logging. Thlogger.py contains an individual function for every loggable value/values. Some (the most important) of these functions are:


def create_logger(logdir)

The create_logger() function has to be used for initializing the logger and specifying the target destination of the logging directory. It is always important, that the logdir either does not exist yet or is an empty directory.


def log_episode_return(episode_return, episode_count)

With log_episode_return() one is able to log the accumulated reward per episode, with the step being the curresponding current episode count.


def log_action_divergence(action_probs, action_probs_old, episode_count, apply_softmax )

With log_action_divergence() one can calculate the divergence between actions in the current episode and actions in the last episode. Therefore the action_probabilities for each observation per timestep in an episode has to be collected. In the end of an episode this collection of action probabilites and the collection from the episode before can be passed to the log_action_divergence() method, which then calculates the kl divergence between action probabilities of the last episode and the current episode. Example code snippet with a model with softmax activation in the last layer:


def log_frame(frame, episode_count, step)

Using log_frame() one can log the frame which is currently being observed, or which corresponds with the current timestep. The episode count is the current episode and the step is the timestep within the episode on which the frame is being observed or corresponds with.


from drlvis import logger
import numpy as np

probs_curr = []

for episode in range(episode_range):

    for timestep in range(optional_timestep_range):
    
        if end_of_current_episode: #done in openai gym
            if episode >= 1:
                logger.log_action_divergence(probs_old, probs_curr, episode)
            probs_old = probs_curr

        probs_curr.append(model(observation[np.newaxis,:]))

def log_action_probs(predictions, episode_count, step, apply_softmax)

One can use log_action_probs() for logging the predictions of ones model for the currently observed timestep in an episode. If the model does not output probabilites, one can set apply_softmax to True for creating probabilities based on predictions.


def log_experiment_random_states(random_state_samples, predicted_dists, obs_min, obs_max, episode_num, state_meanings, apply_softmax)

The log_experiment_random_states()function takes a highdimensional array containing randomly generated states in bounds of the environments capabilities. (obs_min, obs_max) It also needs the episode in which a random states experiment shall be performed. The function then reduces the dimensions to two dimensions with UMAP for visualisation purposes. The state meanings can be passed for easier environments to reflect what the different states mean. A random state experiment itself is just a method to evaluate the agents confidence in selecting certain actions for randomly generated states. Example code snippet:

from drlvis import logger
import numpy as np

def random_states_experiment(model, episode_num):
   
    obs_space = env.observation_space
    obs_min = obs_space.low
    obs_max = obs_space.high


    num_samples = 10000 # can be an arbitrary number
    random_state_samples = np.random.uniform(
        low=obs_min, high=obs_max, size=(num_samples, len(obs_min)))

    predicted_dists = model(random_state_samples)
   
    logger.log_experiment_random_states(random_state_samples, predicted_dists, obs_min, obs_max, episode_num, [])

def log_action_distribution(actions, episode_count)

The log_action_distribution() function calculates the distribution of actions in the specified episode. Therefore one solely has to pass the actions, which where selected in the current episode episode_count


def log_weights(weight_tensor, step, episode_count)

With log_weights()one can log the weights of the last layer of ones model in a given timestep in an episode. This can be done as follows (model is keras model but not of major importance):

from drlvis import logger

weights = agent.model.weights[-2].numpy()
logger.log_weights(weight_tensor=weights, step=timestep ,episode_count=episode)

Examples

Examples on how to use the logger functions in real DRL implementations can be found in the examples folder that contains simple cartpole implementation in dqn_cartpole.ipynb and a more complex DQN implementation for playing Atari Breakout in dqn/.

Bachelor Thesis

For further information on how to use DRLVis and details about the application, I refer to my bachelor thesis located at documents/bachelor_thesis_visdrl.pdf.

License

MIT

Owner
Marios Sirtmatsis
Marios Sirtmatsis
A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022)

DFC2022 Baseline A simple baseline for the 2022 IEEE GRSS Data Fusion Contest (DFC2022) This repository uses TorchGeo, PyTorch Lightning, and Segmenta

isaac 24 Nov 28, 2022
An open source Jetson Nano baseboard and tools to design your own.

My Jetson Nano Baseboard This basic baseboard gives the user the foundation and the flexibility to design their own baseboard for the Jetson Nano. It

NVIDIA AI IOT 57 Dec 29, 2022
🚀 PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)"

PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)" Unofficial PyTorch Implementation of Progressi

Vitaliy Hramchenko 58 Dec 19, 2022
RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining

RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining Our code is based on Learning Attention-based Embed

宋朝都 4 Aug 07, 2022
Pytorch implementation for DFN: Distributed Feedback Network for Single-Image Deraining.

DFN:Distributed Feedback Network for Single-Image Deraining Abstract Recently, deep convolutional neural networks have achieved great success for sing

6 Nov 05, 2022
How will electric vehicles affect traffic congestion and energy consumption: an integrated modelling approach

EV-charging-impact This repository contains the code that has been used for the Queue modelling for the paper "How will electric vehicles affect traff

7 Nov 30, 2022
Scenarios, tutorials and demos for Autonomous Driving

The Autonomous Driving Cookbook (Preview) NOTE: This project is developed and being maintained by Project Road Runner at Microsoft Garage. This is cur

Microsoft 2.1k Jan 02, 2023
Bridging Vision and Language Model

BriVL BriVL (Bridging Vision and Language Model) 是首个中文通用图文多模态大规模预训练模型。BriVL模型在图文检索任务上有着优异的效果,超过了同期其他常见的多模态预训练模型(例如UNITER、CLIP)。 BriVL论文:WenLan: Bridgi

235 Dec 27, 2022
CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021

CLDF dataset derived from Robbeets et al.'s "Triangulation Supports Agricultural Spread" from 2021 How to cite If you use these data please cite the o

Digital Linguistics 2 Dec 20, 2021
The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

AICITY2021_Track2_DMT The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop. Introduction

Hao Luo 91 Dec 21, 2022
Unofficial pytorch implementation of 'Image Inpainting for Irregular Holes Using Partial Convolutions'

pytorch-inpainting-with-partial-conv Official implementation is released by the authors. Note that this is an ongoing re-implementation and I cannot f

Naoto Inoue 525 Jan 01, 2023
PyTorch implementation of MICCAI 2018 paper "Liver Lesion Detection from Weakly-labeled Multi-phase CT Volumes with a Grouped Single Shot MultiBox Detector"

Grouped SSD (GSSD) for liver lesion detection from multi-phase CT Note: the MICCAI 2018 paper only covers the multi-phase lesion detection part of thi

Sang-gil Lee 36 Oct 12, 2022
This is Official implementation for "Pose-guided Feature Disentangling for Occluded Person Re-Identification Based on Transformer" in AAAI2022

PFD:Pose-guided Feature Disentangling for Occluded Person Re-identification based on Transformer This repo is the official implementation of "Pose-gui

Tao Wang 93 Dec 18, 2022
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl

Yue Gao 102 Jan 02, 2023
Explainability for Vision Transformers (in PyTorch)

Explainability for Vision Transformers (in PyTorch) This repository implements methods for explainability in Vision Transformers

Jacob Gildenblat 442 Jan 04, 2023
AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation

AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation AniGAN: Style-Guided Generative Adversarial Networks for U

Bing Li 81 Dec 14, 2022
The original weights of some Caffe models, ported to PyTorch.

pytorch-caffe-models This repo contains the original weights of some Caffe models, ported to PyTorch. Currently there are: GoogLeNet (Going Deeper wit

Katherine Crowson 9 Nov 04, 2022
Code for paper Adaptively Aligned Image Captioning via Adaptive Attention Time

Adaptively Aligned Image Captioning via Adaptive Attention Time This repository includes the implementation for Adaptively Aligned Image Captioning vi

Lun Huang 45 Aug 27, 2022
Codebase for "ProtoAttend: Attention-Based Prototypical Learning."

Codebase for "ProtoAttend: Attention-Based Prototypical Learning." Authors: Sercan O. Arik and Tomas Pfister Paper: Sercan O. Arik and Tomas Pfister,

47 2 May 17, 2022
Temporal Knowledge Graph Reasoning Triggered by Memories

MTDM Temporal Knowledge Graph Reasoning Triggered by Memories To alleviate the time dependence, we propose a memory-triggered decision-making (MTDM) n

4 Sep 25, 2022