MASS (Mueen's Algorithm for Similarity Search) - a python 2 and 3 compatible library used for searching time series sub-sequences under z-normalized Euclidean distance for similarity.

Overview

Introduction

Tweet

MASS allows you to search a time series for a subquery resulting in an array of distances. These array of distances enable you to identify similar or dissimilar subsequences compared to your query. At its core, MASS computes Euclidean distances under z-normalization in an efficient manner and is domain agnostic in nature. It is the fundamental algorithm that the matrix profile algorithm is built on top of.

mass-ts is a python 2 and 3 compatible library.

Free software: Apache Software License 2.0

Features

Original Author's Algorithms

  • MASS - the first implementation of MASS
  • MASS2 - the second implementation of MASS that is significantly faster. Typically this is the one you will use.
  • MASS3 - a piecewise version of MASS2 that can be tuned to your hardware. Generally this is used to search very large time series.
  • MASS_weighted - TODO

Library Specific Algorithms

  • MASS2_batch - a batch version of MASS2 that reduces overall memory usage, provides parallelization and enables you to find top K number of matches within the time series. The goal of using this implementation is for very large time series similarity search.
  • top_k_motifs - find the top K number of similar subsequences to your given query. It returns the starting index of the subsequence.
  • top_k_discords - find the top K number of dissimilar subsequences to your given query. It returns the starting index of the subsequence.
  • MASS2_gpu - a GPU implementation of MASS2 leveraging the Python library CuPy.

Installation

pip install mass-ts

GPU Support

Please follow the installation guide for CuPy. It covers what drivers and environmental dependencies are required. Once you are finished there, you can install GPU support for the algorithms.

pip install mass-ts[gpu]

Example Usage

A dedicated repository for practical examples can be found at the mass-ts-examples repository.

import numpy as np
import mass_ts as mts

ts = np.loadtxt('ts.txt')
query = np.loadtxt('query.txt')

# mass
distances = mts.mass(ts, query)

# mass2
distances = mts.mass2(ts, query)

# mass3
distances = mts.mass3(ts, query, 256)

# mass2_gpu
distances = mts.mass2_gpu(ts, query)

# mass2_batch
# start a multi-threaded batch job with all cpu cores and give me the top 5 matches.
# note that batch_size partitions your time series into a subsequence similarity search.
# even for large time series in single threaded mode, this is much more memory efficient than
# MASS2 on its own.
batch_size = 10000
top_matches = 5
n_jobs = -1
indices, distances = mts.mass2_batch(ts, query, batch_size, 
    top_matches=top_matches, n_jobs=n_jobs)

# find minimum distance
min_idx = np.argmin(distances)

# find top 4 motif starting indices
k = 4
exclusion_zone = 25
top_motifs = mts.top_k_motifs(distances, k, exclusion_zone)

# find top 4 discord starting indices
k = 4
exclusion_zone = 25
top_discords = mts.top_k_discords(distances, k, exclusion_zone)

Citations

Abdullah Mueen, Yan Zhu, Michael Yeh, Kaveh Kamgar, Krishnamurthy Viswanathan, Chetan Kumar Gupta and Eamonn Keogh (2015), The Fastest Similarity Search Algorithm for Time Series Subsequences under Euclidean Distance, URL: http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html

Owner
Matrix Profile Foundation
Enabling community members to easily interact with the Matrix Profile algorithms through education, support and software.
Matrix Profile Foundation
Doing the asl sign language classification on static images using graph neural networks.

SignLangGNN When GNNs 💜 MediaPipe. This is a starter project where I tried to implement some traditional image classification problem i.e. the ASL si

10 Nov 09, 2022
A simple Rock-Paper-Scissors game using CV in python

ML18_Rock-Paper-Scissors-using-CV A simple Rock-Paper-Scissors game using CV in python For IITISOC-21 Rules and procedure to play the interactive game

Anirudha Bhagwat 3 Aug 08, 2021
A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

A minimal yet resourceful implementation of diffusion models (along with pretrained models + synthetic images for nine datasets)

Vikash Sehwag 65 Dec 19, 2022
Code for the paper "Asymptotics of ℓ2 Regularized Network Embeddings"

README Code for the paper Asymptotics of L2 Regularized Network Embeddings. Requirements Requires Stellargraph 1.2.1, Tensorflow 2.6.0, scikit-learm 0

Andrew Davison 0 Jan 06, 2022
TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular potentials

TorchMD-net TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular

TorchMD 104 Jan 03, 2023
CS550 Machine Learning course project on CNN Detection.

CNN Detection (CS550 Machine Learning Project) Team Members (Tensor) : Yadava Kishore Chodipilli (11940310) Thashmitha BS (11941250) This is a work do

yaadava_kishore 2 Jan 30, 2022
Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Nerdy Rodent 2.3k Jan 04, 2023
SpinalNet: Deep Neural Network with Gradual Input

SpinalNet: Deep Neural Network with Gradual Input This repository contains scripts for training different variations of the SpinalNet and its counterp

H M Dipu Kabir 142 Dec 30, 2022
This is a Deep Leaning API for classifying emotions from human face and human audios.

Emotion AI This is a Deep Leaning API for classifying emotions from human face and human audios. Starting the server To start the server first you nee

crispengari 5 Oct 02, 2022
Unofficial PyTorch Implementation of "DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features"

Pytorch Implementation of Deep Orthogonal Fusion of Local and Global Features (DOLG) This is the unofficial PyTorch Implementation of "DOLG: Single-St

DK 96 Jan 06, 2023
🛠️ Tools for Transformers compression using Lightning ⚡

Bert-squeeze is a repository aiming to provide code to reduce the size of Transformer-based models or decrease their latency at inference time.

Jules Belveze 66 Dec 11, 2022
A denoising diffusion probabilistic model synthesises galaxies that are qualitatively and physically indistinguishable from the real thing.

Realistic galaxy simulation via score-based generative models Official code for 'Realistic galaxy simulation via score-based generative models'. We us

Michael Smith 32 Dec 20, 2022
Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA)

Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA). Master's thesis documents. Bibliography, experiments and reports.

Erick Cobos 73 Dec 04, 2022
Consistency Regularization for Adversarial Robustness

Consistency Regularization for Adversarial Robustness Official PyTorch implementation of Consistency Regularization for Adversarial Robustness by Jiho

40 Dec 17, 2022
Predicting the duration of arrival delays for commercial flights.

Flight Delay Prediction Our objective is to predict arrival delays of commercial flights. According to the US Department of Transportation, about 21%

Jordan Silke 1 Jan 11, 2022
Repository for Multimodal AutoML Benchmark

Benchmarking Multimodal AutoML for Tabular Data with Text Fields Repository for the NeurIPS 2021 Dataset Track Submission "Benchmarking Multimodal Aut

Xingjian Shi 44 Nov 24, 2022
NasirKhusraw - The TSP solved using genetic algorithm and show TSP path overlaid on a map of the Iran provinces & their capitals.

Nasir Khusraw : Travelling Salesman Problem The TSP solved using genetic algorithm. This project show TSP path overlaid on a map of the Iran provinces

J Brave 2 Sep 01, 2022
A simple implementation of Kalman filter in Multi Object Tracking

kalman Filter in Multi-object Tracking A simple implementation of Kalman filter in Multi Object Tracking 本实现是在https://github.com/liuchangji/kalman-fil

124 Dec 29, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon

145 Dec 13, 2022
This code is a near-infrared spectrum modeling method based on PCA and pls

Nirs-Pls-Corn This code is a near-infrared spectrum modeling method based on PCA and pls 近红外光谱分析技术属于交叉领域,需要化学、计算机科学、生物科学等多领域的合作。为此,在(北邮邮电大学杨辉华老师团队)指导下

Fu Pengyou 6 Dec 17, 2022