Unofficial Python library for using the Polish Wordnet (plWordNet / Słowosieć)

Overview

Polish Wordnet Python library

Simple, easy-to-use and reasonably fast library for using the Słowosieć (also known as PlWordNet) - a lexico-semantic database of the Polish language. PlWordNet can also be browsed here.

I created this library, because since version 2.9, PlWordNet cannot be easily loaded into Python (for example with nltk), as it is only provided in a custom plwnxml format.

Usage

Load wordnet from an XML file (this will take about 20 seconds), and print basic statistics.

import plwordnet
wn = plwordnet.load('plwordnet_4_2.xml')
print(wn)

Expected output:

PlWordnet
  lexical units: 513410
  synsets: 353586
  relation types: 306
  synset relations: 1477849
  lexical relations: 393137

Find lexical units with name leśny and print all relations, where where that unit is in the subject/parent position.

for lu in wn.lemmas('leśny'):
    for s, p, o in wn.lexical_relations_where(subject=lu):
        print(p.format(s, o))

Expected output:

leśny.2 tworzy kolokację z polana.1
leśny.2 jest synonimem mpar. do las.1
leśny.3 przypomina las.1
leśny.4 jest derywatem od las.1
leśny.5 jest derywatem od las.1
leśny.6 przypomina las.1

Print all relation types and their ids:

for id, rel in wn.relation_types.items():
    print(id, rel.name)

Expected output:

10 hiponimia
11 hiperonimia
12 antonimia
13 konwersja
...

Installation

Note: plwordnet requires at Python 3.7 or newer.

pip install plwordnet

Version support

This library should be able to read future versions of PlWordNet without modification, even if more relation types are added. Still, if you use this library with a version of PlWordNet that is not listed below, please consider contributing information if it is supported.

  • PlWordNet 4.2
  • PlWordNet 4.0
  • PlWordNet 3.2
  • PlWordNet 3.0
  • PlWordNet 2.3
  • PlWordNet 2.2
  • PlWordNet 2.1

Documentation

See plwordnet/wordnet.py for RelationType, Synset and LexicalUnit class definitions.

Package functions

  • load(source): Reads PlWordNet, where src is a path to the wordnet XML file, or a path to the pickled wordnet object. Passed paths can point to files compressed with gzip or lzma.

Wordnet instance properties

  • lexical_relations: List of (subject, predicate, object) triples
  • synset_relations: List of (subject, predicate, object) triples
  • relation_types: Mapping from relation type id to object
  • lexical_units: Mapping from lexical unit id to unit object
  • synsets: Mapping from synset id to object
  • (lexical|synset)_relations_(s|o|p): Mapping from id of subject/object/predicate to a set of matching lexical unit/synset relation ids
  • lexical_units_by_name: Mapping from lexical unit name to a set of matching lexical unit ids

Wordnet methods

  • lemmas(value): Returns a list of LexicalUnit, where the name is equal to value
  • lexical_relations_where(subject, predicate, object): Returns lexical relation triples, with matching subject or/and predicate or/and object. Subject, predicate and object arguments can be integer ids or LexicalUnit and RelationType objects.
  • synset_relations_where(subject, predicate, object): Returns synset relation triples, with matching subject or/and predicate or/and object. Subject, predicate and object arguments can be integer ids or Synset and RelationType objects.
  • dump(dst): Pickles the Wordnet object to opened file dst or to a new file with path dst.

RelationType methods

  • format(x, y, short=False): Substitutes x and y into the RelationType display format display. If short, x and y are separated by the short relation name shortcut.
Comments
  • Fix for abstract attribute bug, MAJOR speedup of synset_relations_where

    Fix for abstract attribute bug, MAJOR speedup of synset_relations_where

    Hi Max.

    I've fixed the bug related to abstract attribute of the synset (it was always True, because bool("non-empty-string") is always True)

    I've also speeded up synset_relations_where by order of 3-4 magnitudes.

    opened by dchaplinsky 7
  • Exposing relations in Wordnet class

    Exposing relations in Wordnet class

    This might be a bit an overkill, but it has two advantages.

    First is: image

    Another is that you can rewrite code like this:

    def path_to_top(synset):
        spo = []
        for rel in [11, 107, 171, 172, 199, 212, 213]:
    

    with meaningful names, not numbers

    opened by dchaplinsky 3
  • Domains dict

    Domains dict

    I've used wikipedia (https://en.wikipedia.org/wiki/PlWordNet) to decipher 45 of 54 domains listed on Słowosieć.

    There might be more: image for example, zwz

    Can you try to decipher the rest? My Polish isn't too good (yet ))

    opened by dchaplinsky 3
  • WIP: hypernyms/hyponyms/hypernym_paths routines for WordNet class

    WIP: hypernyms/hyponyms/hypernym_paths routines for WordNet class

    So, here is my attempt. I've used standard python stack for now, will let you know if it caused any problems

    I've tested it on Africa/Afryka with different combinations, all looked sane to me:

    for lu in wn.find("Afryka"):
        for i, pth in enumerate(wn.hypernym_paths(lu.synset, full_searh=True, interlingual=True)):
            print(f"{i + 1}: " + "->".join(str(s) for s in pth))
    

    gave me

    1: {kontynent.2}->{ląd.1 ziemia.4}->{obszar.1 rejon.3 obręb.1}->{przestrzeń.1}
    2: {kontynent.2}->{ląd.1 ziemia.4}->{obszar.1 rejon.3 obręb.1}->{location.1}->{object.1 physical object.1}->{physical entity.1}->{entity.1}
    3: {kontynent.2}->{ląd.1 ziemia.4}->{land.4 dry land.1 earth.3 ground.1 solid ground.1 terra firma.1}->{object.1 physical object.1}->{physical entity.1}->{entity.1}
    

    Sorry, I accidentally blacked your file, so now it has more changes than expected. The important one, though is that:

    +        # For cases like Instance_Hypernym/Instance_Hyponym
    +        for rel in self.relation_types.values():
    +            if rel.inverse is not None and rel.inverse.inverse is None:
    +                rel.inverse.inverse = rel
    
    opened by dchaplinsky 1
  • Question: hypernym/hyponym tree traversal and export

    Question: hypernym/hyponym tree traversal and export

    Hello.

    The next logical step for me is to implement tree traversal and data export. For tree traversal I'd try to stick to the following algorithm:

    • Find the true top-level hypernyms for the english and polish (no interlingual hypernymy)
    • Calculate number of leaves under each top level hypernym (and/or number of LUs under it)
    • For each node calculate the distance from top-level hypernym

    To export I'd like to use the information above and pass some callables for filtering to only export particular nodes/rels. For example, I only need first 3-4 levels of the trees for nouns, that has more than X leaves. This way I'll have a way to export and visualize only parts of the trees I need.

    Speaking of export, I'm looking into graphviz (to basically lay top level ontology on paper) and ttl, but in the format, that is similar to PWN original TTL export.

    I'd like to have your opinion on two things:

    • General approach
    • How to incorporate that into code. It might be a part of Wordnet class, a separate file (maybe under contrib section), an usage example or a separate script which I/we do or don't publish at all
    opened by dchaplinsky 1
  • Separate file and classes for domains, support for bz2 in load helper

    Separate file and classes for domains, support for bz2 in load helper

    Hi Max. I've slightly cleaned up your spreadsheet on domains (replaced TODO and dashes with nones and made POSes compatible to UD POS tagset) and wrapped everything into classes. I've also made two rows out of cwytw / cwyt and moved pl description of adj/adv into english one. I made en fields default ones for str method

    It's up to you to replace str domains in LexicalUnit with instances of Domain class as it's still ok to compare Domain to str

    I've also added support for bz2 in loader helper.

    opened by dchaplinsky 1
  • Include sentiment annotations

    Include sentiment annotations

    PlWordNet 4.2 comes with a supplementary file (słownik_anotacji_emocjonalnej.csv) containing sentiment annotations for lexical units. Users should be able to load and access sentiment data.

    enhancement 
    opened by maxadamski 1
  • Parse the description format

    Parse the description format

    Currently, nothing is done with the description field in Synset and LexicalUnit. Information about the description format comes in PlWordNets readme.

    Parsing should be done lazily to avoid slowing down the initial loading of PlWordNet into memory.

    Example description:

    ##K: og. ##D: owoc (wielopestkowiec) jabłoni. [##P: Jabłka są kształtem zbliżone do kuli, z zagłębieniem na szczycie, z którego wystaje ogonek.] {##L: http://pl.wikipedia.org/wiki/Jab%C5%82ko}
    

    Desired behavior:

    A new (memoized) method rich_description returns the following dict:

    dict(
      qualifier='og.',
      definition='owoc (wielopestkowiec) jabłoni.',
      examples=['Jabłka są kształtem zbliżone do kuli, z zagłębieniem na szczycie, z którego wystaje ogonek'],
      sources=['http://pl.wikipedia.org/wiki/Jab%C5%82ko'])
    
    enhancement 
    opened by maxadamski 1
Releases(0.1.5)
Owner
Max Adamski
Student of AI @ PUT
Max Adamski
Code for CodeT5: a new code-aware pre-trained encoder-decoder model.

CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models for Code Understanding and Generation This is the official PyTorch implementation

Salesforce 564 Jan 08, 2023
ChessCoach is a neural network-based chess engine capable of natural-language commentary.

ChessCoach is a neural network-based chess engine capable of natural-language commentary.

Chris Butner 380 Dec 03, 2022
An official implementation for "CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval"

The implementation of paper CLIP4Clip: An Empirical Study of CLIP for End to End Video Clip Retrieval. CLIP4Clip is a video-text retrieval model based

ArrowLuo 456 Jan 06, 2023
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

13.2k Jul 07, 2021
本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含 自然语言处理各领域的 面试题积累。

【关于 NLP】那些你不知道的事 作者:杨夕、芙蕖、李玲、陈海顺、twilight、LeoLRH、JimmyDU、艾春辉、张永泰、金金金 介绍 本项目是作者们根据个人面试和经验总结出的自然语言处理(NLP)面试准备的学习笔记与资料,该资料目前包含 自然语言处理各领域的 面试题积累。 目录架构 一、【

1.4k Dec 30, 2022
Biterm Topic Model (BTM): modeling topics in short texts

Biterm Topic Model Bitermplus implements Biterm topic model for short texts introduced by Xiaohui Yan, Jiafeng Guo, Yanyan Lan, and Xueqi Cheng. Actua

Maksim Terpilowski 49 Dec 30, 2022
Galois is an auto code completer for code editors (or any text editor) based on OpenAI GPT-2.

Galois is an auto code completer for code editors (or any text editor) based on OpenAI GPT-2. It is trained (finetuned) on a curated list of approximately 45K Python (~470MB) files gathered from the

Galois Autocompleter 91 Sep 23, 2022
LeBenchmark: a reproducible framework for assessing SSL from speech

LeBenchmark: a reproducible framework for assessing SSL from speech

11 Nov 30, 2022
Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding

Towards Nonlinear Disentanglement in Natural Data with Temporal Sparse Coding

Bethge Lab 61 Dec 21, 2022
TTS is a library for advanced Text-to-Speech generation.

TTS is a library for advanced Text-to-Speech generation. It's built on the latest research, was designed to achieve the best trade-off among ease-of-training, speed and quality. TTS comes with pretra

Mozilla 6.5k Jan 08, 2023
A Word Level Transformer layer based on PyTorch and 🤗 Transformers.

Transformer Embedder A Word Level Transformer layer based on PyTorch and 🤗 Transformers. How to use Install the library from PyPI: pip install transf

Riccardo Orlando 27 Nov 20, 2022
A fast hierarchical dimensionality reduction algorithm.

h-NNE: Hierarchical Nearest Neighbor Embedding A fast hierarchical dimensionality reduction algorithm. h-NNE is a general purpose dimensionality reduc

Marios Koulakis 35 Dec 12, 2022
Arabic speech recognition, classification and text-to-speech.

klaam Arabic speech recognition, classification and text-to-speech using many advanced models like wave2vec and fastspeech2. This repository allows tr

ARBML 177 Dec 27, 2022
Text to speech for Vietnamese, ez to use, ez to update

Chào mọi người, đây là dự án mở nhằm giúp việc đọc được trở nên dễ dàng hơn. Rất cảm ơn đội ngũ Zalo đã cung cấp hạ tầng để mình có thể tạo ra app này

Trần Cao Minh Bách 32 Jul 29, 2022
A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN

artificial intelligence cosmic love and attention fire in the sky a pyramid made of ice a lonely house in the woods marriage in the mountains lantern

Phil Wang 2.3k Jan 01, 2023
Include MelGAN, HifiGAN and Multiband-HifiGAN, maybe NHV in the future.

Fast (GAN Based Neural) Vocoder Chinese README Todo Submit demo Support NHV Discription Include MelGAN, HifiGAN and Multiband-HifiGAN, maybe include N

Zhengxi Liu (刘正曦) 134 Dec 16, 2022
Use Tensorflow2.7.0 Build OpenAI'GPT-2

TF2_GPT-2 Use Tensorflow2.7.0 Build OpenAI'GPT-2 使用最新tensorflow2.7.0构建openai官方的GPT-2 NLP模型 优点 使用无监督技术 拥有大量词汇量 可实现续写(堪比“xx梦续写”) 实现对话后续将应用于FloatTech的Bot

Watermelon 9 Sep 13, 2022
pytorch implementation of Attention is all you need

A Pytorch Implementation of the Transformer: Attention Is All You Need Our implementation is largely based on Tensorflow implementation Requirements N

230 Dec 07, 2022
Uncomplete archive of files from the European Nopsled Team

European Nopsled CTF Archive This is an archive of collected material from various Capture the Flag competitions that the European Nopsled team played

European Nopsled 4 Nov 24, 2021