Finds snippets in iambic pentameter in English-language text and tries to combine them to a rhyming sonnet.

Overview

Sonnet finder

Finds snippets in iambic pentameter in English-language text and tries to combine them to a rhyming sonnet.

Usage

This is a Python script that should run without a GPU or any other special hardware requirements.

  1. Install the required packages, e.g. via: pip install -r requirements.txt

  2. Prepare a plain text file, say input.txt, with text you want to make a sonnet out of (sonnet-ize? sonnet-ify?). It can have multiple sentences on the same line, but a sentence should not be split across multiple lines.

    For example, I used pandoc --to=plain --wrap=none to generate a text file from my LaTeX papers. You could also start by grabbing some text files from Project Gutenberg.

  3. Run sonnet finder: python sonnet_finder.py input.txt -o output.tsv

    Using -o will save a list of all extracted candidate phrases, sorted by rhyme pattern, so you can generate new sonnets more quickly (see below) or browse and cherry-pick from the candidates to make your own sonnet out of these lines.

    Either way, the script will output a full example sonnet to STDOUT (provided enough rhyming pairs in iambic pentameter were found).

  4. If you've saved an output.tsv file before, you can quickly generate new sonnets via python sonnet_remix.py output.tsv. Since the stress and pronunciation prediction can be slow on larger files, this is much better than re-running sonnet_finder.py if you want more automatically generated suggestions.

Examples

This is a sonnet (with cherry-picked lines) made out of my PhD thesis:

the application of existing tools
describe a mapping to a modern form
applying similar replacement rules
the base ensembles slightly outperform

hungarian, icelandic, portuguese
perform a similar evaluation
contemporary lexemes or morphemes
a single dataset in isolation

historical and modern language stages
the weighted combination of encoder
the german dative ending -e in phrases
predictions fed into the next decoder

in this example from the innsbruck letter
machine translation still remains the better

These stanzas are compiled from a couple of automatically-generated suggestions based on the abstracts of all papers published in 2021 in the ACL Anthology:

effective algorithm that enables
improvements on a wide variety
and training with adjudicated labels
anxiety and test anxiety

obtain remarkable improvements on
decoder architecture, which equips
associated with the lexicon
surprising personal relationships

the impact of the anaphoric one
complexity prediction competition
developed for a laboratory run
existing parsers typically condition

examples, while in practice, most unseen
evaluate translation tasks between

Here's the same using Moby Dick:

among the marble senate of the dead
offensive matters consequent upon
a crawling reptile of the land, instead
fifteen, eighteen, and twenty hours on

the lakeman now patrolled the barricade
egyptian tablets, whose antiquity
the waters seemed a golden finger laid
maintains a permanent obliquity

the pequod with the little negro pippin
and with a frightful roll and vomit, he
increased, besides perhaps improving it in
transparent air into the summer sea

the traces of a simple honest heart
the fishery, and not the thousandth part

(The emjambment in the third stanza here is a lucky coincidence; the script currently doesn't do any kind of syntactic analysis or attempt coherence between lines.)

How it works

This script relies on the grapheme-to-phoneme library g2p_en by Park & Kim to convert the English input text to phoneme sequences (i.e., how the text would be pronounced). I chose this because it's a pip-installable Python library that fulfills two important criteria:

  1. it's not restricted to looking up pronunciations in a dictionary, but can handle arbitrary words through the use of a neural model (although, obviously, this will not always be accurate);

  2. it provides stress information for each vowel (i.e., whether any given vowel should be stressed or unstressed, which is important for determining the poetic meter).

The script then scans the g2p output for occurrences of iambic pentameter, i.e. a 0101010101(0) pattern, additionally checking if they coincide with word boundaries.

For finding snippets that rhyme, I rely mostly on Ghazvininejad et al. (2016), particularly §3 (relaxing the iambic pentameter a bit by allowing words that end in 100) and §5.2 (giving an operational definition of "slant rhyme" that I mostly try to follow).

QNA (Questions Nobody Asked)

  • Why does the script sometimes output lines that don't rhyme or don't fit the iambic meter? This script can only be as good as the grapheme-to-phoneme algorithm that's used. It frequently fails on words it doesn't know (for example, it tries to rhyme datasets with Portuguese?!) and also usually fails on abbreviations. Maybe there's a better g2p library that could be used, or the existing g2p_en could be modified to accept a custom dictionary, so you could manually define pronunciations for commonly used words.

  • Could this script also generate other types of poems? Sure. You could start by changing the regex iambic_pentameter to something else; maybe a sequence of dactyls? There are some further hardcoded assumptions in the code about iambic pentameter in the function get_stress_and_boundaries() that might have to be modified.

  • Could this script generate poems in languages other than English? This would require a suitable replacement for g2p_en that predicts pronunciations and stress patterns for the desired language, as well as re-writing the code that determines whether two phrases can rhyme; see the comments in the script for details. In particular, the code for English uses ARPABET notation for the pronunciation, which won't be suitable for other languages.

  • Can this script generate completely novel phrases in the style of an input text? This script does not "hallucinate" any text or generate anything that wasn't already there in the input; if you want to do that, take a look at Deep-speare maybe.

etc.

Written by Marcel Bollmann, inspired by a tweet, licensed under the MIT License.

I'm not the first one to write a script like this, but it was a fun exercise!

Owner
Marcel Bollmann
Computational linguist, postdoc, programming enthusiast.
Marcel Bollmann
Compute distance between sequences. 30+ algorithms, pure python implementation, common interface, optional external libs usage.

TextDistance TextDistance -- python library for comparing distance between two or more sequences by many algorithms. Features: 30+ algorithms Pure pyt

Life4 3k Jan 06, 2023
Nmt - TensorFlow Neural Machine Translation Tutorial

Neural Machine Translation (seq2seq) Tutorial Authors: Thang Luong, Eugene Brevdo, Rui Zhao (Google Research Blogpost, Github) This version of the tut

6.1k Dec 29, 2022
Study German declensions (dER nettE Mann, ein nettER Mann, mit dEM nettEN Mann, ohne dEN nettEN Mann ...) Generate as many exercises as you want using the incredible power of SPACY!

Study German declensions (dER nettE Mann, ein nettER Mann, mit dEM nettEN Mann, ohne dEN nettEN Mann ...) Generate as many exercises as you want using the incredible power of SPACY!

Hans Alemão 4 Jul 20, 2022
A Python/Pytorch app for easily synthesising human voices

Voice Cloning App A Python/Pytorch app for easily synthesising human voices Documentation Discord Server Video guide Voice Sharing Hub FAQ's System Re

Ben Andrew 840 Jan 04, 2023
Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Code and dataset for the EMNLP 2021 Finding paper "Can NLI Models Verify QA Systems’ Predictions?"

Jifan Chen 22 Oct 21, 2022
A PyTorch-based model pruning toolkit for pre-trained language models

English | 中文说明 TextPruner是一个为预训练语言模型设计的模型裁剪工具包,通过轻量、快速的裁剪方法对模型进行结构化剪枝,从而实现压缩模型体积、提升模型速度。 其他相关资源: 知识蒸馏工具TextBrewer:https://github.com/airaria/TextBrewe

Ziqing Yang 231 Jan 08, 2023
An open source framework for seq2seq models in PyTorch.

pytorch-seq2seq Documentation This is a framework for sequence-to-sequence (seq2seq) models implemented in PyTorch. The framework has modularized and

International Business Machines 1.4k Jan 02, 2023
Part of Speech Tagging using Hidden Markov Model (HMM) POS Tagger and Brill Tagger

Part of Speech Tagging using Hidden Markov Model (HMM) POS Tagger and Brill Tagger In this project, our aim is to tune, compare, and contrast the perf

Chirag Daryani 0 Dec 25, 2021
Yet Another Sequence Encoder - Encode sequences to vector of vector in python !

Yase Yet Another Sequence Encoder - encode sequences to vector of vectors in python ! Why Yase ? Yase enable you to encode any sequence which can be r

Pierre PACI 12 Aug 19, 2021
Code for Text Prior Guided Scene Text Image Super-Resolution

Code for Text Prior Guided Scene Text Image Super-Resolution

82 Dec 26, 2022
Spert NLP Relation Extraction API deployed with torchserve for inference

URLMask Python program for Linux users to change a URL to ANY domain. A program than can take any url and mask it to any domain name you like. E.g. ne

Zichu Chen 1 Nov 24, 2021
profile tools for pytorch nn models

nnprof Introduction nnprof is a profile tool for pytorch neural networks. Features multi profile mode: nnprof support 4 profile mode: Layer level, Ope

Feng Wang 42 Jul 09, 2022
Research Code for NeurIPS 2020 Spotlight paper "Large-Scale Adversarial Training for Vision-and-Language Representation Learning": UNITER adversarial training part

VILLA: Vision-and-Language Adversarial Training This is the official repository of VILLA (NeurIPS 2020 Spotlight). This repository currently supports

Zhe Gan 109 Dec 31, 2022
The FinQA dataset from paper: FinQA: A Dataset of Numerical Reasoning over Financial Data

Data and code for EMNLP 2021 paper "FinQA: A Dataset of Numerical Reasoning over Financial Data"

Zhiyu Chen 114 Dec 29, 2022
Code for ACL 2021 main conference paper "Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances".

Conversations are not Flat: Modeling the Intrinsic Information Flow between Dialogue Utterances This repository contains the code and pre-trained mode

ICTNLP 90 Dec 27, 2022
Basic Utilities for PyTorch Natural Language Processing (NLP)

Basic Utilities for PyTorch Natural Language Processing (NLP) PyTorch-NLP, or torchnlp for short, is a library of basic utilities for PyTorch NLP. tor

Michael Petrochuk 2.1k Jan 01, 2023
🏆 • 5050 most frequent words in 109 languages

🏆 Most Common Words Multilingual 5000 most frequent words in 109 languages. Uses wordfrequency.info as a source. 🔗 License source code license data

14 Nov 24, 2022
Research code for the paper "Fine-tuning wav2vec2 for speaker recognition"

Fine-tuning wav2vec2 for speaker recognition This is the code used to run the experiments in https://arxiv.org/abs/2109.15053. Detailed logs of each t

Nik 103 Dec 26, 2022
Arabic speech recognition, classification and text-to-speech.

klaam Arabic speech recognition, classification and text-to-speech using many advanced models like wave2vec and fastspeech2. This repository allows tr

ARBML 177 Dec 27, 2022
A unified tokenization tool for Images, Chinese and English.

ICE Tokenizer Token id [0, 20000) are image tokens. Token id [20000, 20100) are common tokens, mainly punctuations. E.g., icetk[20000] == 'unk', ice

THUDM 42 Dec 27, 2022