[ICLR'21] FedBN: Federated Learning on Non-IID Features via Local Batch Normalization

Related tags

Deep LearningFedBN
Overview

FedBN: Federated Learning on Non-IID Features via Local Batch Normalization

This is the PyTorch implemention of our paper FedBN: Federated Learning on Non-IID Features via Local Batch Normalization by Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp and Qi Dou

Abstract

The emerging paradigm of federated learning (FL) strives to enable collaborative training of deep models on the network edge without centrally aggregating raw data and hence improving data privacy. In most cases, the assumption of independent and identically distributed samples across local clients does not hold for federated learning setups. Under this setting, neural network training performance may vary significantly according to the data distribution and even hurt training convergence. Most of the previous work has focused on a difference in the distribution of labels. Unlike those settings, we address an important problem of FL, e.g., different scanner/sensors in medical imaging, different scenery distribution in autonomous driving (highway vs. city), where local clients may store examples with different marginal or conditional feature distributions compared to other nodes, which we denote as feature shift non-iid. In this work, we propose an effective method that uses local batch normalization to alleviate the feature shift before averaging models. The resulting scheme, called FedBN, outperforms both classical FedAvg, as well as the state-of-the-art for non-iid data (FedProx) on our extensive experiments. These empirical results are supported by a convergence analysis that shows in a simplified setting that FedBN has a faster convergence rate in expectation than FedAvg.

avatar

Usage

Setup

pip

See the requirements.txt for environment configuration.

pip install -r requirements.txt

conda

We recommend using conda to quick setup the environment. Please use the following commands.

conda env create -f environment.yaml
conda activate fedbn

Dataset & Pretrained Modeel

Benchmark(Digits)

  • Please download our pre-processed datasets here, put under data/ directory and perform following commands:
    cd ./data
    unzip digit_dataset.zip
  • Please download our pretrained model here and put under snapshots/ directory, perform following commands:
    cd ./snapshots
    unzip digit_model.zip

office-caltech10

  • Please download our pre-processed datasets here, put under data/ directory and perform following commands:
    cd ./data
    unzip office_caltech_10_dataset.zip
  • Please download our pretrained model here and put under snapshots/ directory, perform following commands:
    cd ./snapshots
    unzip office_caltech_10_model.zip

DomainNet

  • Please first download our splition here, put under data/ directory and perform following commands:
    cd ./data
    unzip domainnet_dataset.zip
  • then download dataset including: Clipart, Infograph, Painting, Quickdraw, Real, Sketch, put under data/DomainNet directory and unzip them.
    cd ./data/DomainNet
    unzip [filename].zip
  • Please download our pretrained model here and put under snapshots/ directory, perform following commands:
    cd ./snapshots
    unzip domainnet_model.zip

Train

Federated Learning

Please using following commands to train a model with federated learning strategy.

  • --mode specify federated learning strategy, option: fedavg | fedprox | fedbn
cd federated
# benchmark experiment
python fed_digits.py --mode fedbn

# office-caltech-10 experiment
python fed_office.py --mode fedbn

# DomaiNnet experiment
python fed_domainnet.py --mode fedbn

SingleSet

Please using following commands to train a model using singleset data.

  • --data specify the single dataset
cd singleset 
# benchmark experiment, --data option: svhn | usps | synth | mnistm | mnist
python single_digits.py --data svhn

# office-caltech-10 experiment --data option: amazon | caltech | dslr | webcam
python single_office.py --data amazon

# DomaiNnet experiment --data option: clipart | infograph | painting | quickdraw | real | sketch
python single_domainnet.py --data clipart

Test

cd federated
# benchmark experiment
python fed_digits.py --mode fedbn --test

# office-caltech-10 experiment
python fed_office.py --mode fedbn --test

# DomaiNnet experiment
python fed_domainnet.py --mode fedbn --test

Citation

If you find the code and dataset useful, please cite our paper.

@inproceedings{
li2021fedbn,
title={Fed{\{}BN{\}}: Federated Learning on Non-{\{}IID{\}} Features via Local Batch Normalization},
author={Xiaoxiao Li and Meirui JIANG and Xiaofei Zhang and Michael Kamp and Qi Dou},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=6YEQUn0QICG}
}
Owner
[email protected]
Medical Image Analysis, Artificial Intelligence, Robotics
<a href=[email protected]">
LiDAR R-CNN: An Efficient and Universal 3D Object Detector

LiDAR R-CNN: An Efficient and Universal 3D Object Detector Introduction This is the official code of LiDAR R-CNN: An Efficient and Universal 3D Object

TuSimple 295 Jan 05, 2023
Official Code for ICML 2021 paper "Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline"

Revisiting Point Cloud Shape Classification with a Simple and Effective Baseline Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, Jia Deng Internati

Princeton Vision & Learning Lab 115 Jan 04, 2023
SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images.

SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images (IEEE GRSL 2021) Code (based on mmdetection) for SSPNet: Scale Selec

Italian Cannon 37 Dec 28, 2022
sense-py-AnishaBaishya created by GitHub Classroom

Compute Statistics Here we compute statistics for a bunch of numbers. This project uses the unittest framework to test functionality. Pass the tests T

1 Oct 21, 2021
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

536 Dec 20, 2022
For holding anime-related object classification and detection models

Animesion An end-to-end framework for anime-related object classification, detection, segmentation, and other models. Update: 01/22/2020. Due to time-

Edwin Arkel Rios 72 Nov 30, 2022
PyTorch Implementation of Realtime Multi-Person Pose Estimation project.

PyTorch Realtime Multi-Person Pose Estimation This is a pytorch version of Realtime_Multi-Person_Pose_Estimation, origin code is here Realtime_Multi-P

Dave Fang 157 Nov 12, 2022
Art Project "Schrödinger's Game of Life"

Repo of the project "Team Creative Quantum AI: Schrödinger's Game of Life" Installation new conda env: conda create --name qcml python=3.8 conda activ

ℍ◮ℕℕ◭ℍ ℝ∈ᛔ∈ℝ 2 Sep 15, 2022
Github project for Attention-guided Temporal Coherent Video Object Matting.

Attention-guided Temporal Coherent Video Object Matting This is the Github project for our paper Attention-guided Temporal Coherent Video Object Matti

71 Dec 19, 2022
Weight estimation in CT by multi atlas techniques

maweight A Python package for multi-atlas based weight estimation for CT images, including segmentation by registration, feature extraction and model

György Kovács 0 Dec 24, 2021
PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop.

VoiceLoop PyTorch implementation of the method described in the paper VoiceLoop: Voice Fitting and Synthesis via a Phonological Loop. VoiceLoop is a n

Meta Archive 873 Dec 15, 2022
An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Neural Architecture Search with Random Labels(RLNAS) Introduction This project provides an implementation for Neural Architecture Search with Random L

18 Nov 08, 2022
Masked regression code - Masked Regression

Masked Regression MR - Python Implementation This repositery provides a python implementation of MR (Masked Regression). MR can efficiently synthesize

Arbish Akram 1 Dec 23, 2021
Visyerres sgdf woob - Modules Woob pour l'intranet et autres sites Scouts et Guides de France

Vis'Yerres SGDF - Modules Woob Vous avez le sentiment que l'intranet des Scouts

Thomas Touhey (pas un pseudonyme) 3 Dec 24, 2022
Cognate Detection Repository

Cognate Detection Repository Details This repository contains the data for two publications: Challenge Dataset of Cognates and False Friend Pairs from

Diptesh Kanojia 1 Apr 26, 2022
A Keras implementation of YOLOv3 (Tensorflow backend)

keras-yolo3 Introduction A Keras implementation of YOLOv3 (Tensorflow backend) inspired by allanzelener/YAD2K. Quick Start Download YOLOv3 weights fro

7.1k Jan 03, 2023
Pytorch implementation of the paper: "A Unified Framework for Separating Superimposed Images", in CVPR 2020.

Deep Adversarial Decomposition PDF | Supp | 1min-DemoVideo Pytorch implementation of the paper: "Deep Adversarial Decomposition: A Unified Framework f

Zhengxia Zou 72 Dec 18, 2022
Watch faces morph into each other with StyleGAN 2, StyleGAN, and DCGAN!

FaceMorpher FaceMorpher is an innovative project to get a unique face morph (or interpolation for geeks) on a website. Yes, this means you can see fac

Anish 9 Jun 24, 2022
The final project of "Applying AI to EHR Data" of "AI for Healthcare" nanodegree - Udacity.

Patient Selection for Diabetes Drug Testing Project Overview EHR data is becoming a key source of real-world evidence (RWE) for the pharmaceutical ind

Omar Laham 1 Jan 14, 2022
We utilize deep reinforcement learning to obtain favorable trajectories for visual-inertial system calibration.

Unified Data Collection for Visual-Inertial Calibration via Deep Reinforcement Learning Update: The lastest code will be updated in this branch. Pleas

ETHZ ASL 27 Dec 29, 2022