Usando Multi Player Perceptron e Regressão Logistica para classificação de SPAM

Overview

Relatório dos procedimentos executados e resultados obtidos.

Objetivos

  • Treinar um modelo para classificação de SPAM usando o dataset train_data.
  • Classificar a coluna SMS do dataset validation_data como “ok” ou “blocked” a partir do modelo treinado.

Explorando o dataset

A partir das amostras de texto presentes na colula “SMS” do dataset train_data, foram extraidas métricas que auxiliaram a entender os dados, como prepara-los e na difinição de critérios para a escolha do modelo adequado:

  • Número de amostras: total de amostras do datset.
  • Número de classes: total de classes no dataset na coluna “LABEL”.
  • Número de amostras por classe: número de exemplos por classe.
  • Mediana de palavras por amostra: mediana do número de palavras em uma unica amostra em todo dataset.
  • Distribuição de frequência: gráfico com a distribuição do número de ocorrências das 15 palavras mais frequêntes no dataset.
Métrica Valor
Número de amostras 6000
Número de classes 2
Número de amostras classe “ok” 4500
Número de amostras classe “blocked” 1500
Mediana de palavras por amostra 10

Tabela 1: train_data métricas.

distribuicao-orig.jpg

**Figura 1: Distribuição de frequência.** 
Exemplos de SMS não bloqueadas:

recuperamos seu usuario e senha de acesso no infojobs! usuario: [email protected]. senha: miguel28. obrigado! 

MARSH CORRETORA: Anna, boleto parc. 01 do Seg Auto com venc.: 28/12/2018 enviado para:[email protected] com esclarecimentos e instrucoes 

Host : RB_Bicanga Ip: 170.244.231.14 nao esta respondendo ao ping - 2019-04-19 22:30:23

----------------------------------------------------------------------------------------

Exemplos de SMS bloqueadas:

BOLETO REFERENTE AS PARCELAS EM ATRASO DO CONSÓRCIO PELO BB.COM VENCIMENTO PARA HOJE Ñ PODE HAVER QUEBRA NO ACORDO. BONATTO ADV 0800 606 3301.

050003DA0202|lcloud-apple-lnc.com/?iphone=VtBqROY .

BB INFORMA:VALIDE SUA SENHA E EVITE TRANSTORNO. ACESSE: www.Bbrasildesbloqueio.com/?7R8BQ8CI

Figura 2: Amostras de texto

Com base na Tabela 1, observa-se que existem 2 classes e que elas estão desbalanceadas, além disso, a distribuição no Gráfico 1 e a Figura 2 mostram que o texto contém letras maiúsculas, minúsculas, números, pontuação, links, stopwords e caracteres especiais.

Escolha do modelo

Os modelos podem ser amplamente classificados em duas categorias: os que usam informações de ordenação de palavras (modelos de sequência) e aqueles que apenas veem o texto como “sacos” (conjuntos) de palavras (modelos n-gram).

Os modelos de sequência incluem redes neurais convolucionais (CNNs), redes neurais recorrentes (RNNs) e suas variações. Os tipos de modelos n-gram incluem regressão logística, multi layer perceptrons simples MLPs ou redes neurais totalmente conectadas, gradient boosted trees e support vector machines.

Com base nas informações acima e nas métricas extraídas das amostras do dataset, levou-se em consideração a razão entre o número de amostras (S) e a mediana de palavras por amostra (W) como principal critério para a escolha do modelo. Quando o valor dessa razão é pequeno (<1500), MLPs alimentandas por n-grams possuem um bom desempenho.

Nesta análise, o valor S/W obtido no dataset train_data foi de 600 ( 6000 / 10) , por isso foi escolhido o modelo MPLs.

Preparando os dados

Os dados passaram pelas seguintes etapas:

  1. Pré-processamento: apesar de não ter influenciado significativamente no desempenho geral do modelo, foi incluida uma etpa de pré-processamento para remoção de acentuação, stopwords e o texto foi colocado em lowercase.
  2. Downsampling da maioria: as classes com a maioria de amostras foram balanceadas de acordo com as classes com o menor número de amostras. Testes executados, demostraram uma melhora nos resultados.
  3. Holdout: os dados foram divididos em subconjuntos mutuamente exclusivos, de treinamento e teste na proporção 70/30 respectivamente.
  4. Tokenizção e Vetorização: divisão do texto em tokens e conversão em vetores numéricos com TfidfVectorizer.
  5. Feature Selection: selcionado as top 20.000 features mais importantes para determinado rótulo com SelectKbest e f-classif.

Construção, treino e avaliação dos resultados do Modelo

Para construção do modelo MLPs, foram usados os frameworks TensorFlow e Keras. O modelo possui duas camadas Dense, adicionando algumas camadas Dropout para regularização (para evitar overfitting). Foi utilizado o callback EarlyStop para interromper o treinamento quando os validadion loss não diminuirem em dois passos consecutivos.

Os paramêtros para treinar o modelo foram:

learning_rate=1e-3,
epochs=1000,
batch_size=128,
layers=2,
units=64,
dropout_rate=0.2

Após executar a função de treinamento, o modelo convergiu em 29 épocas com uma perda média de 0.0079 e acurácia de ~99.5 % conforme a linha abaixo.

29/29 - 0s - loss: 0.0080 - acc: 0.9956 - 24ms/epoch - 844us/step
[0.00799043569713831, 0.995555579662323]

Na Figura 3a, observamos a relação entre a acurácia nas amostras de treino e teste e a evolução das épocas. Os resultados mostram que o modelo generaliza adequadamente. A Figura 3b, no mesmo sentido, mostra a diminuição dos erros à medida que a acurácia aumenta no decorrer das épocas.

mlp_training_and_validation.jpg

                **Figura 3a: Treino e Validação acurácia.                Figura 3b  Treino e Validação perda.**

Através da matriz de confusão e das métrica na Figura 4, podemos ter mais informações sobre o desempenho do modelo de classificação em questão. O modelo classificou corretamente 461 das 465 amostras não spam , obtendo Precision = 0,993, porém classficou erroneamente como não spam uma amostra que é spam, alcançando um Recall = 0,998.

cf_matrix.jpg

                                   **Figura 4: Matriz de confusão e métricas de classificação.**

Para entender os erros de classificação, foi usado o LIME. Através dele, é possível inspecionar as amostras classificadas incorretamente e entender quais termos foram mais determinantes para os erros. Na Figura 5, a amostra analisada é um falso negativo, algo indesejado quando se trata de segurança.

explicabilidade.jpg

**Figura 5:  Explicação do Lime para um falso negativo** 

Os termos 15, you, to, code, sent e with estão contribuindo para o modelo classificar como não spam e os termos http, itunes, com e link para classificar como spam. A partir de insights fornecidos pelo LIME, é possivel alterar algumas abodagens como pré-processamento, tokenização dentre outras coisas e com isso melhorar a qualidade do modelo.

Conclusão

Foi criado um modelo ****Multi Layer Perceptron (MLPs) usando frameworks como Keras e TensorFlow para classificar dados de SMS do dataset train_data. Após varios testes o modelo atingiu um bom resultado mostrando ser aplicável em dados reais.

O dataset validation_data foi rotulado e exportado. Os dataset rotulado, este relatório, bem como todo o código utilizado na análise estão disponíveis na pasta indicada no Google Drive.

Owner
André Mediote
André Mediote
A numbers check python package

A numbers check python package

Fayas Noushad 3 Nov 28, 2021
Djangoblog - A blogging site where people can make their accout and write blogs and read other author's blogs

This a blogging site where people can make their accout and write blogs and read other author's blogs.

1 Jan 26, 2022
This repository collects nice scripts ("plugins") for the SimpleBot bot for DeltaChat.

Having fun with DeltaChat This repository collects nice scripts ("plugins") for the SimpleBot bot for DeltaChat. DeltaChat is a nice e-mail based mess

Valentin Brandner 3 Dec 25, 2021
Iris-client - Python client for DFIR-IRIS

Python client dfir_iris_client offers a Python interface to communicate with IRI

DFIR-IRIS 11 Dec 22, 2022
importlib_resources is a backport of Python standard library importlib.resources module for older Pythons.

importlib_resources is a backport of Python standard library importlib.resources module for older Pythons. The key goal of this module is to replace p

Python 36 Dec 13, 2022
Expense Tracker is a very good tool to keep track of your expenseditures and the total money you saved.

Expense Tracker is a very good tool to keep track of your expenseditures and the total money you saved.

Shreejan Dolai 9 Dec 31, 2022
Insights in greek football league 2020-2021 and bookmaker's accuracy

Greek_Football_League_Analysis_2020_2021 Aim of Project: This project aims in deriving useful insights from greek football league 2020-2021 by mean st

2 Jan 16, 2022
A code to clean and extract a bib file based on keywords.

These are two scripts I use to generate clean bib files. clean_bibfile.py: Removes superfluous fields (which are not included in fields_to_keep.json)

Antoine Allard 4 May 16, 2022
A python script that automatically joins a zoom meeting based on your timetable.

Zoom Automation A python script that automatically joins a zoom meeting based on your timetable. What does it do? It performs the following processes:

Shourya Gupta 3 Jan 01, 2022
Pre-crisis Risk Management for Personal Finance

Антикризисный риск-менеджмент личных финансов Риск-менеджмент личных финансов условиях санкций и/или финансового кризиса: делаем сегодня все, чтобы за

Dmitry Petukhov 593 Jan 09, 2023
my own python useful functions

PythonToolKit Motivation This Repo should help save time for data scientists' daily work regarding the Time Series regression task by providing functi

Kai 2 Oct 01, 2022
Vita Specific Patches and Application for Doki Doki Literature Club (Steam Version) using Ren'Py PSVita

Doki-Doki-Literature-Club-Vita Vita Specific Patches and Application for Doki Doki Literature Club (Steam Version) using Ren'Py PSVita Contains: Modif

Jaylon Gowie 25 Dec 30, 2022
Synchrosqueezing, wavelet transforms, and time-frequency analysis in Python

Synchrosqueezing is a powerful reassignment method that focuses time-frequency representations, and allows extraction of instantaneous amplitudes and frequencies

John Muradeli 382 Jan 06, 2023
A smart personal companion and health assistant.

Steps to Install : Clone the repository Go to ResQ-Sources Execute ResQ-Lite.py --: Manual Controls : DanceRobot.py --: You can call functions like fo

Tuhinadri Banerjee 1 May 25, 2022
AutoMetamon: Simple program to play Metamon automatically

AutoMetamon: Simple program to play Metamon automatically

Ngô Văn Tuấn 2 Sep 13, 2022
Hexa is an advanced browser.It can carry out all the functions present in a browser.

Hexa is an advanced browser.It can carry out all the functions present in a browser.It is coded in the language Python using the modules PyQt5 and sys mainly.It is gonna get developed more in the fut

1 Dec 10, 2021
A python script to turn tabs into spaces the right way.

detab A python script to turn tabs into spaces the right way. detab turns all tabs into spaces, not just leading tabs. Not all tabs have the same leng

1 Jan 26, 2022
Scripts used in the RayStation medical radiation dosimetry treatment planning system

Med Phys Scripts These are scripts that I, the medical physics assistant at Cookeville Regional Medical Center, wrote for use in our radiation therapy

Kaley White 2 Oct 19, 2022
An app to automatically take attendance by scanning students' bar coded ID card as they enter the classroom.

Auto Classroom Attendance This application may be run on a PC to automatically scan students' ID card using a generic bar code scanner and output the

1 Nov 10, 2021
Blender addon, import and update mixamo animation

This is a blender addon for import and update mixamo animations.

ywaby 7 Apr 19, 2022