Deep Learning Emotion decoding using EEG data from Autism individuals

Overview

Deep Learning Emotion decoding using EEG data from Autism individuals

This repository includes the python and matlab codes using for processing EEG 2D images on a customized Convolutional Neural Network (CNN) to decode emotion visual stimuli on individuals with and without Autism Spectrum Disorder (ASD).

If you would like to use this repository to replicate our experiments with this data or use your our own data, please cite the following paper, more details about this code and implementation are described there as well:

Mayor Torres, J.M. ¥, Clarkson, T.¥, Hauschild, K.M., Luhmann, C.C., Lerner, M.D., Riccardi, G., Facial emotions are accurately encoded in the brains of those with autism: A deep learning approach. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging,(2021).

Requirements

  • Tensorflow >= v1.20
  • sklearn
  • subprocess
  • numpy
  • csv
  • Matlab > R2018b

For the python code we provide:

1. A baseline code to evaluate a Leave-One-Trial-Out cross-validation from two csv files. One including all the trials for train with their corresponding labels and other with the test features of the single trial you want to evaluate. The test and train datafile should have an identifier to be paired by the for loop used for the cross validation. The code to run the baseline classifiier is located on the folder classifier_EEG_call.

Pipeline for EEG Emotion Decoding

To run the classifier pipeline simply download the .py files on the folder classifier_EEG_call and execute the following command on your bash prompt:

   python LOTO_lauch_emotions_test.py "data_path_file_including_train_test_files"

Please be sure your .csv files has a flattened time-points x channels EEG image after you remove artifacts and noise from the signal. Using the ADJUST EEGlab pipeline preferrably (https://sites.google.com/a/unitn.it/marcobuiatti/home/software/adjust).

The final results will be produced in a txt file in the output folder of your choice. Some metrics obtained from a sample of 88 ADOS-2 diagnosed participants 48 controls, and 40 ASD are the following:

Metrics/Groups FER CNN
Acc Pre Re F1 Acc Pre Re F1
TD 0.813 0.808 0.802 0.807 0.860 0.864 0.860 0.862
ASD* 0.776 0.774 0.768 0.771 0.934 0.935 0.933 0.934

Face Emotion Recognition (FER) task performance is denoted as the human performance obtained when labeling the same stimuli presented to obtain the EEG activity.

2. A code for using the package the iNNvestigate package (https://github.com/albermax/innvestigate) Saliency Maps and unify them from the LOTO crossvalidation mentioned in the first item. Code is located in the folder iNNvestigate_evaluation

To run the investigate evaluation simply download the .py files on the folder iNNvestigate_evaluation and execute the following command on your bash prompt:

   python LOTO_lauch_emotions_test_innvestigate.py "data_path_file_including_train_test_files" num_method

The value num_method is defined based on the order iNNvestigate package process saliency maps. For our specific case the number concordance is:

'Original Image'-> 0 'Gradient' -> 1 'SmoothGrad'-> 2 'DeconvNet' -> 3 'GuidedBackprop' -> 4 'PatterNet' -> 5 'PatternAttribution' -> 6 'DeepTaylor' -> 7 'Input * Gradient' -> 8 'Integrated Gradients' -> 9 'LRP-epsilon' -> 10 'LRP-Z' -> 11 'LRP-APresetflat' -> 12 'LRP-BPresetflat' -> 13

An example from saliency maps obtained from LRP-B preset are shown below ->

significant differences are observed on 750-1250 ms relative to the onset between the relevance of Controls and ASD groups!

alt text alt text alt text

For the Matlab code we provide the repository for reading the resulting output performance files for the CNN baseline classifier Reading_CNN_performances, and for the iNNvestigate methods using the same command call due to the output file is composed of the same syntax.

To run a performance checking first download the files on Reading_CNN_performances folder and run the following command on your Matlab prompt sign having the results the .csv files on a folder of your choice.

   read_perf_convnets_subjects('suffix_file','performance_data_path')
Owner
Juan Manuel Mayor Torres
I'm Research Associate in Cardiff University, UK. I'm interested in characterizing behavioral/neural outcome measures on neural representations using ML
Juan Manuel Mayor Torres
Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data

Real-ESRGAN Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data Ported from https://github.com/xinntao/Real-ESRGAN Depend

Holy Wu 44 Dec 27, 2022
Deep Learning Specialization by Andrew Ng, deeplearning.ai.

Deep Learning Specialization on Coursera Master Deep Learning, and Break into AI This is my personal projects for the course. The course covers deep l

Engen 1.5k Jan 07, 2023
Semi-SDP Semi-supervised parser for semantic dependency parsing.

Semi-SDP Semi-supervised parser for semantic dependency parsing. This repo contains the code used for the semi-supervised semantic dependency parser i

12 Sep 17, 2021
This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021.

SG2HOI This repository is for our paper Exploiting Scene Graphs for Human-Object Interaction Detection accepted by ICCV 2021. Installation Pytorch 1.7

HT 10 Dec 20, 2022
Pytorch code for "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks".

:speaker: Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

Amirsina Torfi 114 Dec 18, 2022
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Mayur 119 Nov 24, 2022
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Tr

Sber AI 230 Dec 31, 2022
PyTorch implementation(s) of various ResNet models from Twitch streams.

pytorch-resnet-twitch PyTorch implementation(s) of various ResNet models from Twitch streams. Status: ResNet50 currently not working. Will update in n

Daniel Bourke 3 Jan 11, 2022
Training Very Deep Neural Networks Without Skip-Connections

DiracNets v2 update (January 2018): The code was updated for DiracNets-v2 in which we removed NCReLU by adding per-channel a and b multipliers without

Sergey Zagoruyko 585 Oct 12, 2022
Codecov coverage standard for Python

Python-Standard Last Updated: 01/07/22 00:09:25 What is this? This is a Python application, with basic unit tests, for which coverage is uploaded to C

Codecov 10 Nov 04, 2022
Code for the Paper: Conditional Variational Capsule Network for Open Set Recognition

Conditional Variational Capsule Network for Open Set Recognition This repository hosts the official code related to "Conditional Variational Capsule N

Guglielmo Camporese 35 Nov 21, 2022
π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis

π-GAN: Periodic Implicit Generative Adversarial Networks for 3D-Aware Image Synthesis Project Page | Paper | Data Eric Ryan Chan*, Marco Monteiro*, Pe

375 Dec 31, 2022
Official Pytorch implementation of Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations

Scene Representation Networks This is the official implementation of the NeurIPS submission "Scene Representation Networks: Continuous 3D-Structure-Aw

Vincent Sitzmann 365 Jan 06, 2023
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Gradio 11.7k Jan 07, 2023
Semi-supervised Implicit Scene Completion from Sparse LiDAR

Semi-supervised Implicit Scene Completion from Sparse LiDAR Paper Created by Pengfei Li, Yongliang Shi, Tianyu Liu, Hao Zhao, Guyue Zhou and YA-QIN ZH

114 Nov 30, 2022
Code and data form the paper BERT Got a Date: Introducing Transformers to Temporal Tagging

BERT Got a Date: Introducing Transformers to Temporal Tagging Satya Almasian*, Dennis Aumiller*, and Michael Gertz Heidelberg University Contact us vi

54 Dec 04, 2022
Next-Best-View Estimation based on Deep Reinforcement Learning for Active Object Classification

next_best_view_rl Setup Clone the repository: git clone --recurse-submodules ... In 'third_party/zed-ros-wrapper': git checkout devel Install mujoco `

Christian Korbach 1 Feb 15, 2022
Bayesian optimisation library developped by Huawei Noah's Ark Library

Bayesian Optimisation Research This directory contains official implementations for Bayesian optimisation works developped by Huawei R&D, Noah's Ark L

HUAWEI Noah's Ark Lab 395 Dec 30, 2022
Official Implementation of 'UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers' ICLR 2021(spotlight)

UPDeT Official Implementation of UPDeT: Universal Multi-agent Reinforcement Learning via Policy Decoupling with Transformers (ICLR 2021 spotlight) The

hhhusiyi 96 Dec 22, 2022
RIM: Reliable Influence-based Active Learning on Graphs.

RIM: Reliable Influence-based Active Learning on Graphs. This repository is the official implementation of RIM. Requirements To install requirements:

Wentao Zhang 4 Aug 29, 2022