Comparison-of-OCR (KerasOCR, PyTesseract,EasyOCR)

Overview

Optical Character Recognition

OCR (Optical Character Recognition) is a technology that enables the conversion of document types such as scanned paper documents, PDF files or pictures taken with a digital camera into editable and searchable data. OCR creates words from letters and sentences from words by selecting and separating letters from images.

robot

Requirements

pip install -r requirements.txt

Usage

python main.py

Also you can check the result by one by like:

You have to initilaze your object.

ocr=OCR(image_folder="test/")  

After that, for keras ocr:

ocr.keras_ocr_works()

for easyocr:

ocr.easyocr_model_works()  

for pytesseract:

ocr.pytesseract_model_works()

Results

kerasocr1 kerasocr2 kerasocr3

Conclusion

  • It seems that pytesseract is not very good at detecting text in the entire image and converting str. Instead, text should be detected first with text detection and the texts have to given OCR engines.

  • While keras_ocr is good in terms of accuracy but it is costly in terms of time. Also if you’re using CPU, time might be an issue for you. Keras-OCR is image specific OCR tool. If text is inside the image and their fonts and colors are unorganized.

  • Easy-OCR is lightweight model which is giving a good performance for receipt or PDF conversion. It is giving more accurate results with organized texts like PDF files, receipts, bills. Easy OCR also performs well on noisy images.

  • Pytesseract is performing well for high-resolution images. Certain morphological operations such as dilation, erosion, OTSU binarization can help increase pytesseract performance.

  • All these results can be further improved by performing specific image operations. OCR Prediction is not only dependent on the model and also on a lot of other factors like clarity, grey scale of the image, hyper parameter, weight age given, etc.

Source

https://github.com/faustomorales/keras-ocr
https://github.com/JaidedAI/EasyOCR
https://pypi.org/project/pytesseract/

Owner
Interested in artificial intelligence, machine learning and deep learning besides electronics.
A little but useful tool to explore OCR data extracted with `pytesseract` and `opencv`

Screenshot OCR Tool Extracting data from screen time screenshots in iOS and Android. We are exploring 3 options: Simple OCR with no text position usin

Gabriele Marini 1 Dec 07, 2021
TextBoxes: A Fast Text Detector with a Single Deep Neural Network https://github.com/MhLiao/TextBoxes 基于SSD改进的文本检测算法,textBoxes_note记录了之前整理的笔记。

TextBoxes: A Fast Text Detector with a Single Deep Neural Network Introduction This paper presents an end-to-end trainable fast scene text detector, n

zhangjing1 24 Apr 28, 2022
Détection de créneaux de vaccination disponibles pour l'outil ViteMaDose

Vite Ma Dose ! est un outil open source de CovidTracker permettant de détecter les rendez-vous disponibles dans votre département afin de vous faire v

CovidTracker 239 Dec 13, 2022
A Python wrapper for the tesseract-ocr API

tesserocr A simple, Pillow-friendly, wrapper around the tesseract-ocr API for Optical Character Recognition (OCR). tesserocr integrates directly with

Fayez 1.7k Dec 31, 2022
Kornia is a open source differentiable computer vision library for PyTorch.

Open Source Differentiable Computer Vision Library

kornia 7.6k Jan 06, 2023
Simple SDF mesh generation in Python

Generate 3D meshes based on SDFs (signed distance functions) with a dirt simple Python API.

Michael Fogleman 1.1k Jan 08, 2023
EAST for ICPR MTWI 2018 Challenge II (Text detection of network images)

EAST_ICPR2018: EAST for ICPR MTWI 2018 Challenge II (Text detection of network images) Introduction This is a repository forked from argman/EAST for t

QichaoWu 49 Dec 24, 2022
天池2021"全球人工智能技术创新大赛"【赛道一】:医学影像报告异常检测 - 第三名解决方案

天池2021"全球人工智能技术创新大赛"【赛道一】:医学影像报告异常检测 比赛链接 个人博客记录 目录结构 ├── final------------------------------------决赛方案PPT ├── preliminary_contest--------------------

19 Aug 17, 2022
code for our ICCV 2021 paper "DeepCAD: A Deep Generative Network for Computer-Aided Design Models"

DeepCAD This repository provides source code for our paper: DeepCAD: A Deep Generative Network for Computer-Aided Design Models Rundi Wu, Chang Xiao,

Rundi Wu 85 Dec 31, 2022
Histogram specification using openCV in python .

histogram specification using openCV in python . Have to input miu and sigma to draw gausssian distribution which will be used to map the input image . Example input can be miu = 128 sigma = 30

Tamzid hasan 6 Nov 17, 2021
A bot that extract text from images using the Tesseract OCR.

Text from image (OCR) @ocr_text_bot A simple bot to extract text from images. Usage What do I need? A AWS key configured locally, see here. NodeJS. I

Weverton Marques 4 Aug 06, 2021
CUTIE (TensorFlow implementation of Convolutional Universal Text Information Extractor)

CUTIE TensorFlow implementation of the paper "CUTIE: Learning to Understand Documents with Convolutional Universal Text Information Extractor." Xiaohu

Zhao,Xiaohui 147 Dec 20, 2022
Face Recognizer using Opencv Python

Face Recognizer using Opencv Python The first step create your own dataset with file open-cv-create_dataset second step You can put the photo accordin

Han Izza 2 Nov 16, 2021
Library used to deskew a scanned document

Deskew //Note: Skew is measured in degrees. Deskewing is a process whereby skew is removed by rotating an image by the same amount as its skew but in

Stéphane Brunner 273 Jan 06, 2023
PyTorch Re-Implementation of EAST: An Efficient and Accurate Scene Text Detector

Description This is a PyTorch Re-Implementation of EAST: An Efficient and Accurate Scene Text Detector. Only RBOX part is implemented. Using dice loss

365 Dec 20, 2022
This project is basically to draw lines with your hand, using python, opencv, mediapipe.

Paint Opencv 📷 This project is basically to draw lines with your hand, using python, opencv, mediapipe. Screenshoots 📱 Tools ⚙️ Python Opencv Mediap

Williams Ismael Bobadilla Torres 3 Nov 17, 2021
This repository summarized computer vision theories.

This repository summarized computer vision theories.

3 Feb 04, 2022
OCR of Chicago 1909 Renumbering Plan

Requirements: Python 3 (probably at least 3.4) pipenv (pip3 install pipenv) tesseract (brew install tesseract, at least if you have a mac and homebrew

ted whalen 2 Nov 21, 2021
Text language identification using Wikipedia data

Text language identification using Wikipedia data The aim of this project is to provide high-quality language detection over all the web's languages.

Vsevolod Dyomkin 28 Jul 09, 2022
Code for the ACL2021 paper "Combining Static Word Embedding and Contextual Representations for Bilingual Lexicon Induction"

CSCBLI Code for our ACL Findings 2021 paper, "Combining Static Word Embedding and Contextual Representations for Bilingual Lexicon Induction". Require

Jinpeng Zhang 12 Oct 08, 2022