A large-image collection explorer and fast classification tool

Related tags

Deep Learningimax
Overview

IMAX: Interactive Multi-image Analysis eXplorer

This is an interactive tool for visualize and classify multiple images at a time. It written in Python and Javascript. It is based on Leaflet and it reads the images from a single directory and there is no need for multiple resolutions folders as images are scaled dynamically when zooming in/out. It runs an asyncio server in the back end and supports up 10,000 images reasonable well. It can load more images but it will slower. It runs using multiple cores and has been tested with over 50K images.

You can move and label images all from the keyboard.

You can see a (not very good) gif demo ot the tool in action, a live demo or a better video is here

Demo

Deployment

Simple deployment

Clone this repository:

	git clone https://github.com/mgckind/imax.git
	cd imax/python_server

Create a config file template:

	cp config_template.yaml config.yaml

Edit the config.yaml file to have the correct parameters, see Configuration for more info.

Start the server:

   python3 server.py

Start the client and visit the url printed python_server:

   python3 client.py

If you are running locally you can go to http://localhost:8000/

Docker

  1. Create image from Dockerfile

     cd imax
     docker build -t imax .
    
  2. Create an internal network so server/client can talk through the internal network (is not need for now as we are exposing both services at the localhost)

     docker network create --driver bridge imaxnet
    
  3. Create local config file to be mounted inside the containers. Create config.yaml based on the template, and replace the image location.

  4. Start the server container and attach the volume with images, connect to network and expose port 8888 to localhost

        docker run -d --name server -p 8888:8888 -v {PATH TO CONFIG FILE}:/home/explorer/server/config.yaml -v {PATH TO LOCAL IMAGES}:{PATH TO CONTAINER IMAGES} --network imaxnet imax python server.py
    
  5. Start the client container, connect to network and expose the port 8000 to local host

        docker run -d --name client -p 8000:8000 -v {PATH TO CONFIG FILE}:/home/explorer/server/config.yaml  --network imaxnet imax python client.py
    

Now the containers can talk at the localhost. If you are running locally you can go to http://localhost:8000/

Usage

This is the Help window displayed


Help


-> Fullscreen
-> Invert colors
/ -> Toggle On/Off classified tiles.
First time it reads from DB.

-> Random. Show a new random subsample (if available data is larger)
-> Apply filter to the displayed data.
Use the checkboxes on the left bottom side. -1 means no classified.
-> Reset filters and view. Do not display deleted images.

Move around with mouse and keyboard , use the mouse wheel to zoom in/out and double click to focus on one image.

Keyboard

Use "w","a","s","d" to move the selected tile and the keyboard numbers to apply a class as defined in the configuration file
Use "+", "-" to zoom in/out
Use "c" to clear any class selection
Use "t" to toggle on/off the classes
Use "h" to toggle on/off the Help
Use "f" to toggle on/off Full screen
Defined classes will appear at the bottom right side of the map

Configuration

This is the template config file to use:

#### DISPLAY
display:
  dataname: '{FILL ME}' #Name for the sqlite DB and config file
  path: '{FILL ME}'
  nimages: 1200 #Number of objects to be displayed even if there are more in the folder
  xdim: 40 #X dimension for the display
  ydim: 30 #Y dimension for the display
  tileSize: 256 #Size of the tile for which images are resized at max zoom level
  minXrange: 0
  minYrange: 0
  deltaZoom: 3 #default == 3
#### SERVER
server:
  ssl: false #use ssl, need to have certificates
  sslName: test #prefix of .crt and .key files inside ssl/ folder e.g., ssl/{sslName.key}
  host: 'http://localhost' #if using ssl, change to https
  port: 8888
  rootUrl: '/cexp' #root url for server, e.g. request are made to /cexp/, if None use "/"
  #workers: None # None will default to the workers in the machine
#### CLIENT
client:
  host: 'http://localhost'
  port: 8000
#### OPERATIONS options
operation:
  updates: true #allows to update and/or remove classes to images, false and classes are fixed.
#### CLASSES
#### classes, use any classes from 0 to 9, class 0 is for hidden! class -1 is no class
classes:
    - Delete: 0
    - Spiral: 8
    - Elliptical: 9
    - Other: 7
Owner
Matias Carrasco Kind
Data Science Research Services @giesdsrs director at UIUC. Astrophysicist and former Senior Research Scientist at @ncsa
Matias Carrasco Kind
ChebLieNet, a spectral graph neural network turned equivariant by Riemannian geometry on Lie groups.

ChebLieNet: Invariant spectral graph NNs turned equivariant by Riemannian geometry on Lie groups Hugo Aguettaz, Erik J. Bekkers, Michaël Defferrard We

haguettaz 12 Dec 10, 2022
Implementation of CaiT models in TensorFlow and ImageNet-1k checkpoints. Includes code for inference and fine-tuning.

CaiT-TF (Going deeper with Image Transformers) This repository provides TensorFlow / Keras implementations of different CaiT [1] variants from Touvron

Sayak Paul 9 Jun 26, 2022
TAP: Text-Aware Pre-training for Text-VQA and Text-Caption, CVPR 2021 (Oral)

TAP: Text-Aware Pre-training TAP: Text-Aware Pre-training for Text-VQA and Text-Caption by Zhengyuan Yang, Yijuan Lu, Jianfeng Wang, Xi Yin, Dinei Flo

Microsoft 61 Nov 14, 2022
Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

Lingvo is a framework for building neural networks in Tensorflow, particularly sequence models.

2.7k Jan 05, 2023
Colour detection is necessary to recognize objects, it is also used as a tool in various image editing and drawing apps.

Colour Detection On Image Colour detection is the process of detecting the name of any color. Simple isn’t it? Well, for humans this is an extremely e

Astitva Veer Garg 1 Jan 13, 2022
repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments

repro_eval repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments. The measures were d

IR Group at Technische Hochschule Köln 9 May 25, 2022
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
Survival analysis (SA) is a well-known statistical technique for the study of temporal events.

DAGSurv Survival analysis (SA) is a well-known statistical technique for the study of temporal events. In SA, time-to-an-event data is modeled using a

Rahul Kukreja 1 Sep 05, 2022
Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation Input Image Initial CAM Successive Maps with adversar

Jungbeom Lee 110 Dec 07, 2022
A Lightweight Experiment & Resource Monitoring Tool 📺

Lightweight Experiment & Resource Monitoring 📺 "Did I already run this experiment before? How many resources are currently available on my cluster?"

170 Dec 28, 2022
ANEA: Distant Supervision for Low-Resource Named Entity Recognition

ANEA: Distant Supervision for Low-Resource Named Entity Recognition ANEA is a tool to automatically annotate named entities in unlabeled text based on

Saarland University Spoken Language Systems Group 15 Mar 30, 2022
Awesome Human Pose Estimation

Human Pose Estimation Related Publication

Zhe Wang 1.2k Dec 26, 2022
Character-Input - Create a program that asks the user to enter their name and their age

Character-Input Create a program that asks the user to enter their name and thei

PyLaboratory 0 Feb 06, 2022
Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators

Enabling Lightweight Fine-tuning for Pre-trained Language Model Compression based on Matrix Product Operators This is our Pytorch implementation for t

RUCAIBox 12 Jul 22, 2022
A PyTorch Implementation of FaceBoxes

FaceBoxes in PyTorch By Zisian Wong, Shifeng Zhang A PyTorch implementation of FaceBoxes: A CPU Real-time Face Detector with High Accuracy. The offici

Zi Sian Wong 797 Dec 17, 2022
Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Code and Experiments for ACL-IJCNLP 2021 Paper Mind Your Outliers! Investigating the Negative Impact of Outliers on Active Learning for Visual Question Answering.

Sidd Karamcheti 50 Nov 16, 2022
ConvMAE: Masked Convolution Meets Masked Autoencoders

ConvMAE ConvMAE: Masked Convolution Meets Masked Autoencoders Peng Gao1, Teli Ma1, Hongsheng Li2, Jifeng Dai3, Yu Qiao1, 1 Shanghai AI Laboratory, 2 M

Alpha VL Team of Shanghai AI Lab 345 Jan 08, 2023
Repository containing the PhD Thesis "Formal Verification of Deep Reinforcement Learning Agents"

Getting Started This repository contains the code used for the following publications: Probabilistic Guarantees for Safe Deep Reinforcement Learning (

Edoardo Bacci 5 Aug 31, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022