Autonomous Movement from Simultaneous Localization and Mapping

Overview

Autonomous Movement from Simultaneous Localization and Mapping

About us

Built by a group of Clarkson University students with the help from Professor Masudul Imtiaz and his Lab Resources.

Micheal Caracciolo           - Sophomore, ECE Department
Owen Casciotti               - Senior, ECE Department
Chris Lloyd                  - Senior, ECE Department
Ernesto Sola-Thomas          - Freshman, ECE Department
Matthew Weaver               - Sophomore, ECE Department
Kyle Bielby                  - Senior, ECE Department
Md Abdul Baset Sarker        - Graduate Student, ECE Department
Tipu Sultan                  - Graduate Student, ME Department
Masudul Imtiaz               - Professor, Clarkson University ECE Department

This project began in January 2021 and was finished May 5th 2021.

Synopsis

Presenting the development of a Simultaneous Localization and Mapping (SLAM) based Autonomous Navigation system.

Supported Devices:

Jetson AGX
Jetson Nano

Hardware:

Wheelchair
Jetson Development board
Any Arduino
Development Computer to install Jetson Jetpack SDK (For AGX)
One Intel Realsense D415
One Motor controller ()
2 12V Batteries For Motors
2 12V Lipo Batteries for Jetson

Software:

Tensorflow Version: 2.3.1

OpenVSLAM

We will need to install a few different Python 3.8 packages. We recommend using Conda environments as then you will not have to compile a few packages. However, some packages are not available in Conda, for those just install via pip while inside of the appropriate Conda env.

csv
heapq
Jetson.GPIO (Can only be installed on Jetson)
keyboard
matplotlib
msgpack
numpy
scipy (Greater than 1.5.0)
signal
websockets

Initial Setup

OpenVSLAM, Official Documentation

Webserver, Not needed unless want to interface with phone

  • Move the www folder into your /var directory in your root file system.
  • Open up python server files and insert your static IP of your Jetson
  • Run python server.py

Note: There is some example data and maps in the csv format. This format is required to correctly transmit maps/paths to the device that is listening to the server.

Android Phone, APK here

  • Insert the IP wanting to connect to, in this instance, the static IP of the Jetson
  • Build the Java app to your Android Phone

Note: This can only be used if the Webserver is set up and the server.py is on. We recommend to have it be turned on via startup. We do not have this implemented in our current code, but can be easily added. If you plan on using a Android Phone for a Map/Path/End point interface, you will need to edit some lines in /src/main.py and add to send_location.py. This is all untested code currently.

Source Code, ensure you're in the right Conda Environment

  • To use your own map/.msg file from OpenVSLAM, you will need to put it in the /data folder. There are a few options with this, you can either use the raw .msg file which our MapFileUnpacker.py will take care of, or you can create a csv format of 0 and 1's in the format of a map. 0 being unoccupied and 1 being occupied in the Occupancy Grid Map. For even easier storage, you could run MapFileUnpacker.py and have it extract the keyframes into a csv, which then you can use for OLD_main.py or main.py. We recommend to use the map file you created which is in the form of .msg.
  • You can either use OLD_main.py or main.py. OLD_main.py can be ran without having to run the motors on the connected Jetson. This is helpful for debugging and testing before you decide to implement the map onto a Jetson. main.py will ONLY work on a Jetson as it will call JetsonMotorInterface.py which contains Jetson.GPIO libraries which can only be installed on a Jetson.
  • If the Android Phone is set up, you will need to edit main.py to send the start position via send_location.py to the webserver. You will also need to uncomment a few lines so that the current map is sent to the /var/www/html filepath. Then, the phone should be able to send back a end value which calls def main with that end value. Otherwise, def main will run with a predefined end value in code.
  • To set up the pinout, you will need to first build arduino_motor_ctrl.ino onto the Arduino that is connected to the motor controller. You can use virtually any pins on the Arduino, depending on what Arduino you use. Set these pins in the .ino file. Next, we want to set the pins on the Jetson that output the data to the Arduino pins. Set these pins in JetsonMotorInterface.py. Be careful not to use any I2C or USART pins as these cannot be configured as GPIO Output.

Note: To properly run main.py without any issues, it is recommended to follow this so that you do not need to run Sudo for any of the /src files. If you were to run Sudo, you would have a bunch of different libraries and it will not run properly. If you get an Illegal Instruction error, please try to create a Conda environment to run these scripts.

Note: We are using a Sabertooth 2x32 Dual 32A Motor Driver to drive our dual Wheelchair motors. The Arduino also gets it's power from the Motor Driver, but do not connect it there while it is connected to the computer for building.

A few things to be weary of, in the main.py, since we are not using the Localization from VSLAM, we are simulating the created map into a path. This path will run differently depending on how accurate it is and the speed of your motors. We recommend you to scale your room to your map, so you will want to section out your map in code and have a timing ratio to ensure it moves the right distance of "Occupancy Grid Map spaces". This is explained better in the code.

The Reinforcement Learning files inside of /src/RL are purely experimental and do work for training. However, due to time constraints, they have not been polished enough to work with our design. They are published here for any future use as they are completely made open-source.

[ICML 2020] DrRepair: Learning to Repair Programs from Error Messages

DrRepair: Learning to Repair Programs from Error Messages This repo provides the source code & data of our paper: Graph-based, Self-Supervised Program

Michihiro Yasunaga 155 Jan 08, 2023
Deep Dual Consecutive Network for Human Pose Estimation (CVPR2021)

Beanie - is an asynchronous ODM for MongoDB, based on Motor and Pydantic. It uses an abstraction over Pydantic models and Motor collections to work wi

295 Dec 29, 2022
Code accompanying "Learning What To Do by Simulating the Past", ICLR 2021.

Learning What To Do by Simulating the Past This repository contains code that implements the Deep Reward Learning by Simulating the Past (Deep RSLP) a

Center for Human-Compatible AI 24 Aug 07, 2021
Official implementation of NeurIPS 2021 paper "Contextual Similarity Aggregation with Self-attention for Visual Re-ranking"

CSA: Contextual Similarity Aggregation with Self-attention for Visual Re-ranking PyTorch training code for CSA (Contextual Similarity Aggregation). We

Hui Wu 19 Oct 21, 2022
This Deep Learning Model Predicts that from which disease you are suffering.

Deep-Learning-Project This Deep Learning Model Predicts that from which disease you are suffering. This Project Covers the Topics of Deep Learning Int

Jai Viral Doshi 0 Jan 20, 2022
Multi-Template Mouse Brain MRI Atlas (MBMA): both in-vivo and ex-vivo

Multi-template MRI mouse brain atlas (both in vivo and ex vivo) Mouse Brain MRI atlas (both in-vivo and ex-vivo) (repository relocated from the origin

8 Nov 18, 2022
Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment

Gender-classification This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and

Aryan raj 11 Oct 16, 2022
Generative Autoregressive, Normalized Flows, VAEs, Score-based models (GANVAS)

GANVAS-models This is an implementation of various generative models. It contains implementations of the following: Autoregressive Models: PixelCNN, G

MRSAIL (Mini Robotics, Software & AI Lab) 6 Nov 26, 2022
Facebook AI Image Similarity Challenge: Descriptor Track

Facebook AI Image Similarity Challenge: Descriptor Track This repository contains the code for our solution to the Facebook AI Image Similarity Challe

Sergio MP 17 Dec 14, 2022
A spatial genome aligner for analyzing multiplexed DNA-FISH imaging data.

jie jie is a spatial genome aligner. This package parses true chromatin imaging signal from noise by aligning signals to a reference DNA polymer model

Bojing Jia 9 Sep 29, 2022
Wordle-solver - Wordle answer generation program in python

🟨 Wordle Solver 🟩 Wordle answer generation program in python ✔️ Requirements U

Dahyun Kang 4 May 28, 2022
A python/pytorch utility library

A python/pytorch utility library

Jiaqi Gu 5 Dec 02, 2022
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm

Appen Repos 86 Dec 07, 2022
[NeurIPS 2021] SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning

SSUL - Official Pytorch Implementation (NeurIPS 2021) SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning Sun

Clova AI Research 44 Dec 27, 2022
Data Preparation, Processing, and Visualization for MoVi Data

MoVi-Toolbox Data Preparation, Processing, and Visualization for MoVi Data, https://www.biomotionlab.ca/movi/ MoVi is a large multipurpose dataset of

Saeed Ghorbani 51 Nov 27, 2022
My implementation of Image Inpainting - A deep learning Inpainting model

Image Inpainting What is Image Inpainting Image inpainting is a restorative process that allows for the fixing or removal of unwanted parts within ima

Joshua V Evans 1 Dec 12, 2021
Rax is a Learning-to-Rank library written in JAX

🦖 Rax: Composable Learning to Rank using JAX Rax is a Learning-to-Rank library written in JAX. Rax provides off-the-shelf implementations of ranking

Google 247 Dec 27, 2022
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
(3DV 2021 Oral) Filtering by Cluster Consistency for Large-Scale Multi-Image Matching

Scalable Cluster-Consistency Statistics for Robust Multi-Object Matching (3DV 2021 Oral Presentation) Filtering by Cluster Consistency (FCC) is a very

Yunpeng Shi 11 Sep 28, 2022
Code for all the Advent of Code'21 challenges mostly written in python

Advent of Code 21 Code for all the Advent of Code'21 challenges mostly written in python. They are not necessarily the best or fastest solutions but j

4 May 26, 2022