[ICML 2021] Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data

Overview

Break-It-Fix-It: Learning to Repair Programs from Unlabeled Data

This repo provides the source code & data of our paper: Break-It-Fix-It: Unsupervised Learning for Program Repair (ICML 2021).

@InProceedings{yasunaga2021break,
  author =  {Michihiro Yasunaga and Percy Liang},
  title =   {Break-It-Fix-It: Unsupervised Learning for Program Repair},
  year =    {2021},  
  booktitle = {International Conference on Machine Learning (ICML)},  
}

Problem: Repair Task

Our approach: BIFI

0. Dependencies

Specifically, run the following commands to create a conda environment (assuming CUDA10.1):

conda create -n BIFI python=3.7.7
conda activate BIFI
pip install tqdm
pip install torch==1.4.0 torchvision==0.5.0
cd utils/fairseq
pip install -e .
pip numpy==1.20.1 editdistance

1. Download Data

Download all the data from here (data.zip) and unzip it (note: 67GB when compressed, 400GB when decompressed). This includes the GitHub-Python dataset, and all the processed training data and trained models associated with BIFI. If you only want the original GitHub-Python dataset, you can download it from here (data_minimal.zip; 1GB). After unzipping the data.zip, the resulting file structure will look like:

.
├── README.md
└── data/
    ├── orig_bad_code/       (GitHub-Python dataset's bad code)
    ├── orig_good_code/      (GitHub-Python dataset's good code)
    └── round0/
        ├── data_paired      (paired data used to train fixer in round0)
        └── model-fixer      (fixer trained in round0)
    ├── round1-BIFI-part1/
        ├── data_paired      (paired data used to train breaker in BIFI round1)
        └── model-breaker    (breaker trained in BIFI round1)
    ├── round1-BIFI-part2/
        ├── data_paired      (paired data used to train fixer in BIFI round1)
        └── model-fixer      (fixer trained in BIFI round1)
    ├── ...

About the GitHub-Python dataset

We collected 3 million Python3 snippets from GitHub. Using the critic (Python AST parser), the code snippets are split into a set of bad code (with AST parse errors) and a set of good code (with no errors). The set of bad code is located at data/orig_bad_code/orig.bad.json and good code at data/orig_good_code/orig.good.json. Each entry of orig.bad.json or orig.good.json is a dictionary consisting of

  • "code_string": raw code in the string format
  • "code_toks_joined": the raw code is split into tokens by Python tokenizer, anonymized (string/number is replaced with special tokens <STRING>/<NUMBER>), and then joined by whitespace. The tokenization was done by utils/code_utils.py: tokenize_python_code()
  • "anonymize_dict": mapping betweens raw string/number and <STRING>/<NUMBER> so that "code_string" can be recovered from "code_toks_joined". This recovery can be done by utils/code_utils.py: code_toks_to_code_string()
  • "err_obj": type of the error caught by the critic (e.g. unbalanced parentheses, indentation error). This is only applicable to orig.bad.json.

The bad code snippets in orig.bad.json are split into 5 chunks (orig.0.bad to orig.4.bad in data/orig_bad_code/), where 3,4 is heldout as the test set and 0,1,2 is made available for BIFI training. This splitting was done by scripts/split_orig_bad_and_good.py

2. Training and Evaluation

First, train the initial fixer by running commands in src/run-round0.py one by one. We then consider three training algorithms on top of it: BIFI (our proposed method), FixerOnly (BIFI without breaker), and BackTranslation (BT; our baseline). For each algorithm,

  • BIFI: run commands in src/run-BIFI.py one by one
  • FixerOnly: run commands in src/run-FixerOnly.py one by one
  • BT: run commands in src/run-BT.py one by one

Below is an illustration for the case of BIFI.

run-round0.sh

export PYTHONPATH=.

#Train initial fixer on synthetic paired data
python src/c001__train_fixer.py --round_name round0 --gpu_id 0 --max_epoch 2

#Run the trained fixer on the bad code (chunk 0-4) and check the outputs by critic
python src/c003__run_fixer.py   --round_name round0 --gpu_ids '0,1,2,3,4'

#Evaluate the fixer outputs on the test set (chunk 3,4)
python src/c005__eval_fixer.py  --round_name round0

run-BIFI.sh (round 1)

#Use the fixer outputs on the bad code (chunk 0,1,2) to get new paired data (Equation 6 in the paper)
python src/c006__generate_paired_data_from_fixer.py --round_name round0 --out_round_name round1-BIFI-part1

#Train breaker on the new paired data (Equation 7 in the paper)
python src/c002__train_breaker.py --round_name round1-BIFI-part1 --gpu_id 0 --max_epoch 3

#Run the trained breaker on the good code and get new paired data (Equation 8 in the paper)
python src/c004__run_breaker.py   --round_name round1-BIFI-part1 --gpu_ids '0,1,2,3,4'
python src/c007__generate_paired_data_from_breaker.py --round_name round1-BIFI-part1 --out_round_name round1-BIFI-part2

#Train fixer on the new paired data (Equation 9 in the paper)
python src/c001__train_fixer.py --round_name round1-BIFI-part2 --gpu_id 0 --max_epoch 2 --continue_from 'data/round0/model-fixer/checkpoint.pt'

#Run the trained fixer on the bad code (chunk 0-4) and check the outputs by critic
python src/c003__run_fixer.py   --round_name round1-BIFI-part2 --gpu_ids '0,1,2,3,4'

#Evaluate the fixer outputs on the test set (chunk 3,4)
python src/c005__eval_fixer.py  --round_name round1-BIFI-part2

This is repeated similarly for round 2.

Owner
Michihiro Yasunaga
PhD Student in Computer Science
Michihiro Yasunaga
Predicting 10 different clothing types using Xception pre-trained model.

Predicting-Clothing-Types Predicting 10 different clothing types using Xception pre-trained model from Keras library. It is reimplemented version from

AbdAssalam Ahmad 3 Dec 29, 2021
Leveraging Two Types of Global Graph for Sequential Fashion Recommendation, ICMR 2021

This is the repo for the paper: Leveraging Two Types of Global Graph for Sequential Fashion Recommendation Requirements OS: Ubuntu 16.04 or higher ver

Yujuan Ding 10 Oct 10, 2022
AWS provides a Python SDK, "Boto3" ,which can be used to access the AWS-account from the local.

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

Shreyas Srivastava 1 Oct 25, 2021
Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model

Official Implementation of SWAGAN: A Style-based Wavelet-driven Generative Model SWAGAN: A Style-based Wavelet-driven Generative Model Rinon Gal, Dana

55 Dec 06, 2022
Imagededup - 😎 Finding duplicate images made easy

imagededup is a python package that simplifies the task of finding exact and near duplicates in an image collection.

idealo 4.3k Jan 07, 2023
Official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION.

IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSUMPTION This is the official repository of IMPROVING DEEP IMAGE MATTING VIA LOCAL SMOOTHNESS ASSU

电线杆 14 Dec 15, 2022
Safe Local Motion Planning with Self-Supervised Freespace Forecasting, CVPR 2021

Safe Local Motion Planning with Self-Supervised Freespace Forecasting By Peiyun Hu, Aaron Huang, John Dolan, David Held, and Deva Ramanan Citing us Yo

Peiyun Hu 90 Dec 01, 2022
A forwarding MPI implementation that can use any other MPI implementation via an MPI ABI

MPItrampoline MPI wrapper library: MPI trampoline library: MPI integration tests: MPI is the de-facto standard for inter-node communication on HPC sys

Erik Schnetter 31 Dec 22, 2022
Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors.

PairRE Code for paper PairRE: Knowledge Graph Embeddings via Paired Relation Vectors. This implementation of PairRE for Open Graph Benchmak datasets (

Alipay 65 Dec 19, 2022
Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions

Natural Posterior Network This repository provides the official implementation o

Oliver Borchert 54 Dec 06, 2022
Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks

Hidden-Fold Networks (HFN): Random Recurrent Residuals Using Sparse Supermasks by Ángel López García-Arias, Masanori Hashimoto, Masato Motomura, and J

Ángel López García-Arias 4 May 19, 2022
A check for whether the dependency jobs are all green.

alls-green A check for whether the dependency jobs are all green. Why? Do you have more than one job in your GitHub Actions CI/CD workflows setup? Do

Re:actors 33 Jan 03, 2023
Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch

Segformer - Pytorch Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch. Install $ pip install segformer-pytorch

Phil Wang 208 Dec 25, 2022
LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and

TuZheng 405 Jan 04, 2023
Pytorch implementation of face attention network

Face Attention Network Pytorch implementation of face attention network as described in Face Attention Network: An Effective Face Detector for the Occ

Hooks 312 Dec 09, 2022
Collaborative forensic timeline analysis

Timesketch Table of Contents About Timesketch Getting started Community Contributing About Timesketch Timesketch is an open-source tool for collaborat

Google 2.1k Dec 28, 2022
A Context-aware Visual Attention-based training pipeline for Object Detection from a Webpage screenshot!

CoVA: Context-aware Visual Attention for Webpage Information Extraction Abstract Webpage information extraction (WIE) is an important step to create k

Keval Morabia 41 Jan 01, 2023
LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

donglee 279 Dec 13, 2022
Adversarial Reweighting for Partial Domain Adaptation

Adversarial Reweighting for Partial Domain Adaptation Code for paper "Xiang Gu, Xi Yu, Yan Yang, Jian Sun, Zongben Xu, Adversarial Reweighting for Par

12 Dec 01, 2022
Six - a Python 2 and 3 compatibility library

Six is a Python 2 and 3 compatibility library. It provides utility functions for smoothing over the differences between the Python versions with the g

Benjamin Peterson 919 Dec 28, 2022