Self-training with Weak Supervision (NAACL 2021)

Related tags

Deep LearningASTRA
Overview

Self-Training with Weak Supervision

This repo holds the code for our weak supervision framework, ASTRA, described in our NAACL 2021 paper: "Self-Training with Weak Supervision"

Overview of ASTRA

ASTRA is a weak supervision framework for training deep neural networks by automatically generating weakly-labeled data. Our framework can be used for tasks where it is expensive to manually collect large-scale labeled training data.

ASTRA leverages domain-specific rules, a large amount of unlabeled data, and a small amount of labeled data through a teacher-student architecture:

alt text

Main components:

  • Weak Rules: domain-specific rules, expressed as Python labeling functions. Weak supervision usually considers multiple rules that rely on heuristics (e.g., regular expressions) for annotating text instances with weak labels.
  • Student: a base model (e.g., a BERT-based classifier) that provides pseudo-labels as in standard self-training. In contrast to heuristic rules that cover a subset of the instances, the student can predict pseudo-labels for all instances.
  • RAN Teacher: our Rule Attention Teacher Network that aggregates the predictions of multiple weak sources (rules and student) with instance-specific weights to compute a single pseudo-label for each instance.

The following table reports classification results over 6 benchmark datasets averaged over multiple runs.

Method TREC SMS YouTube CENSUS MIT-R Spouse
Majority Voting 60.9 48.4 82.2 80.1 40.9 44.2
Snorkel 65.3 94.7 93.5 79.1 75.6 49.2
Classic Self-training 71.1 95.1 92.5 78.6 72.3 51.4
ASTRA 80.3 95.3 95.3 83.1 76.1 62.3

Our NAACL'21 paper describes our ASTRA framework and more experimental results in detail.

Installation

First, create a conda environment running Python 3.6:

conda create --name astra python=3.6
conda activate astra

Then, install the required dependencies:

pip install -r requirements.txt

Download Data

We will soon add detailed instructions for downloading datasets and domain-specific rules as well as supporting custom datasets.

Running ASTRA

You can run ASTRA as:

cd astra
python main.py --dataset  --student_name  --teacher_name 

Supported < STUDENT > models:

  1. logreg: Bag-of-words Logistic Regression classifier
  2. elmo: ELMO-based classifier
  3. bert: BERT-based classifier

Supported < TEACHER > models:

  1. ran: our Rule Attention Network (RAN)

We will soon add instructions for supporting custom student and teacher components.

Citation

@InProceedings{karamanolakis2021self-training,
author = {Karamanolakis, Giannis and Mukherjee, Subhabrata (Subho) and Zheng, Guoqing and Awadallah, Ahmed H.},
title = {Self-training with Weak Supervision},
booktitle = {NAACL 2021},
year = {2021},
month = {May},
publisher = {NAACL 2021},
url = {https://www.microsoft.com/en-us/research/publication/self-training-weak-supervision-astra/},
}

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Code for our paper at ECCV 2020: Post-Training Piecewise Linear Quantization for Deep Neural Networks

PWLQ Updates 2020/07/16 - We are working on getting permission from our institution to release our source code. We will release it once we are granted

54 Dec 15, 2022
Automatic Data-Regularized Actor-Critic (Auto-DrAC)

Auto-DrAC: Automatic Data-Regularized Actor-Critic This is a PyTorch implementation of the methods proposed in Automatic Data Augmentation for General

89 Dec 13, 2022
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

BALLAD This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model. Requirements Python3 Pytorch(1.7.

peng gao 42 Nov 26, 2022
A modification of Daniel Russell's notebook merged with Katherine Crowson's hq-skip-net changes

Edits made to this repo by Katherine Crowson I have added several features to this repository for use in creating higher quality generative art (featu

Paul Fishwick 10 May 07, 2022
Direct application of DALLE-2 to video synthesis, using factored space-time Unet and Transformers

DALLE2 Video (wip) ** only to be built after DALLE2 image is done and replicated, and the importance of the prior network is validated ** Direct appli

Phil Wang 105 May 15, 2022
Neural Re-rendering for Full-frame Video Stabilization

NeRViS: Neural Re-rendering for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 9 Jun 17, 2022
This is the official github repository of the Met dataset

The Met dataset This is the official github repository of the Met dataset. The official webpage of the dataset can be found here. What is it? This cod

Nikolaos-Antonios Ypsilantis 35 Dec 17, 2022
Official tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”

Tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”.

3.7k Dec 31, 2022
The repository for freeCodeCamp's YouTube course, Algorithmic Trading in Python

Algorithmic Trading in Python This repository Course Outline Section 1: Algorithmic Trading Fundamentals What is Algorithmic Trading? The Differences

Nick McCullum 1.8k Jan 02, 2023
SARS-Cov-2 Recombinant Finder for fasta sequences

Sc2rf - SARS-Cov-2 Recombinant Finder Pronounced: Scarf What's this? Sc2rf can search genome sequences of SARS-CoV-2 for potential recombinants - new

Lena Schimmel 41 Oct 03, 2022
Active learning for Mask R-CNN in Detectron2

MaskAL - Active learning for Mask R-CNN in Detectron2 Summary MaskAL is an active learning framework that automatically selects the most-informative i

49 Dec 20, 2022
Code and hyperparameters for the paper "Generative Adversarial Networks"

Generative Adversarial Networks This repository contains the code and hyperparameters for the paper: "Generative Adversarial Networks." Ian J. Goodfel

Ian Goodfellow 3.5k Jan 08, 2023
Forecasting directional movements of stock prices for intraday trading using LSTM and random forest

Forecasting directional movements of stock-prices for intraday trading using LSTM and random-forest https://arxiv.org/abs/2004.10178 Pushpendu Ghosh,

Pushpendu Ghosh 270 Dec 24, 2022
Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression"

beyond-preserved-accuracy Repo for EMNLP 2021 paper "Beyond Preserved Accuracy: Evaluating Loyalty and Robustness of BERT Compression" How to implemen

Kevin Canwen Xu 10 Dec 23, 2022
Predict bus arrival time using VertexAI and Nvidia's Jetson Nano

bus_prediction predict bus arrival time using VertexAI and Nvidia's Jetson Nano imagenet the command for imagenet.py look like this python3 /path/to/i

10 Dec 22, 2022
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
Pytorch implementation of Bert and Pals: Projected Attention Layers for Efficient Adaptation in Multi-Task Learning

PyTorch implementation of BERT and PALs Introduction Work by Asa Cooper Stickland and Iain Murray, University of Edinburgh. Code for BERT and PALs; mo

Asa Cooper Stickland 70 Dec 29, 2022
Code for the published paper : Learning to recognize rare traffic sign

Improving traffic sign recognition by active search This repo contains code for the paper : "Learning to recognise rare traffic signs" How to use this

samsja 4 Jan 05, 2023
Parameterized Explainer for Graph Neural Network

PGExplainer This is a Tensorflow implementation of the paper: Parameterized Explainer for Graph Neural Network https://arxiv.org/abs/2011.04573 NeurIP

Dongsheng Luo 89 Dec 12, 2022
Prometheus Exporter for data scraped from datenplattform.darmstadt.de

darmstadt-opendata-exporter Scrapes data from https://datenplattform.darmstadt.de and presents it in the Prometheus Exposition format. Pull requests w

Martin Weinelt 2 Apr 12, 2022