CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped

Overview

CSWin-Transformer

PWC PWC

This repo is the official implementation of "CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows". The code and models for downstream tasks are coming soon.

Introduction

CSWin Transformer (the name CSWin stands for Cross-Shaped Window) is introduced in arxiv, which is a new general-purpose backbone for computer vision. It is a hierarchical Transformer and replaces the traditional full attention with our newly proposed cross-shaped window self-attention. The cross-shaped window self-attention mechanism computes self-attention in the horizontal and vertical stripes in parallel that from a cross-shaped window, with each stripe obtained by splitting the input feature into stripes of equal width. With CSWin, we could realize global attention with a limited computation cost.

CSWin Transformer achieves strong performance on ImageNet classification (87.5 on val with only 97G flops) and ADE20K semantic segmentation (55.7 mIoU on val), surpassing previous models by a large margin.

teaser

Main Results on ImageNet

model pretrain resolution [email protected] #params FLOPs 22K model 1K model
CSWin-T ImageNet-1K 224x224 82.8 23M 4.3G - model
CSWin-S ImageNet-1k 224x224 83.6 35M 6.9G - model
CSWin-B ImageNet-1k 224x224 84.2 78M 15.0G - model
CSWin-B ImageNet-1k 384x384 85.5 78M 47.0G - model
CSWin-L ImageNet-22k 224x224 86.5 173M 31.5G model model
CSWin-L ImageNet-22k 384x384 87.5 173M 96.8G - model

Main Results on Downstream Tasks

COCO Object Detection

backbone Method pretrain lr Schd box mAP mask mAP #params FLOPS
CSwin-T Mask R-CNN ImageNet-1K 3x 49.0 43.6 42M 279G
CSwin-S Mask R-CNN ImageNet-1K 3x 50.0 44.5 54M 342G
CSwin-B Mask R-CNN ImageNet-1K 3x 50.8 44.9 97M 526G
CSwin-T Cascade Mask R-CNN ImageNet-1K 3x 52.5 45.3 80M 757G
CSwin-S Cascade Mask R-CNN ImageNet-1K 3x 53.7 46.4 92M 820G
CSwin-B Cascade Mask R-CNN ImageNet-1K 3x 53.9 46.4 135M 1004G

ADE20K Semantic Segmentation (val)

Backbone Method pretrain Crop Size Lr Schd mIoU mIoU (ms+flip) #params FLOPs
CSwin-T Semantic FPN ImageNet-1K 512x512 80K 48.2 - 26M 202G
CSwin-S Semantic FPN ImageNet-1K 512x512 80K 49.2 - 39M 271G
CSwin-B Semantic FPN ImageNet-1K 512x512 80K 49.9 - 81M 464G
CSwin-T UPerNet ImageNet-1K 512x512 160K 49.3 50.4 60M 959G
CSwin-S UperNet ImageNet-1K 512x512 160K 50.0 50.8 65M 1027G
CSwin-B UperNet ImageNet-1K 512x512 160K 50.8 51.7 109M 1222G
CSwin-B UPerNet ImageNet-22K 640x640 160K 51.8 52.6 109M 1941G
CSwin-L UperNet ImageNet-22K 640x640 160K 53.4 55.7 208M 2745G

Requirements

timm==0.3.4, pytorch>=1.4, opencv, ... , run:

bash install_req.sh

Apex for mixed precision training is used for finetuning. To install apex, run:

git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Data prepare: ImageNet with the following folder structure, you can extract imagenet by this script.

│imagenet/
├──train/
│  ├── n01440764
│  │   ├── n01440764_10026.JPEG
│  │   ├── n01440764_10027.JPEG
│  │   ├── ......
│  ├── ......
├──val/
│  ├── n01440764
│  │   ├── ILSVRC2012_val_00000293.JPEG
│  │   ├── ILSVRC2012_val_00002138.JPEG
│  │   ├── ......
│  ├── ......

Train

Train the three lite variants: CSWin-Tiny, CSWin-Small and CSWin-Base:

bash train.sh 8 --data <data path> --model CSWin_64_12211_tiny_224 -b 256 --lr 2e-3 --weight-decay .05 --amp --img-size 224 --warmup-epochs 20 --model-ema-decay 0.99984 --drop-path 0.2
bash train.sh 8 --data <data path> --model CSWin_64_24322_small_224 -b 256 --lr 2e-3 --weight-decay .05 --amp --img-size 224 --warmup-epochs 20 --model-ema-decay 0.99984 --drop-path 0.4
bash train.sh 8 --data <data path> --model CSWin_96_24322_base_224 -b 128 --lr 1e-3 --weight-decay .1 --amp --img-size 224 --warmup-epochs 20 --model-ema-decay 0.99992 --drop-path 0.5

If you want to train our CSWin on images with 384x384 resolution, please use '--img-size 384'.

If the GPU memory is not enough, please use '-b 128 --lr 1e-3 --model-ema-decay 0.99992' or use checkpoint '--use-chk'.

Finetune

Finetune CSWin-Base with 384x384 resolution:

bash finetune.sh 8 --data <data path> --model CSWin_96_24322_base_384 -b 32 --lr 5e-6 --min-lr 5e-7 --weight-decay 1e-8 --amp --img-size 384 --warmup-epochs 0 --model-ema-decay 0.9998 --finetune <pretrained 224 model> --epochs 20 --mixup 0.1 --cooldown-epochs 10 --drop-path 0.7 --ema-finetune --lr-scale 1 --cutmix 0.1

Finetune ImageNet-22K pretrained CSWin-Large with 224x224 resolution:

bash finetune.sh 8 --data <data path> --model CSWin_144_24322_large_224 -b 64 --lr 2.5e-4 --min-lr 5e-7 --weight-decay 1e-8 --amp --img-size 224 --warmup-epochs 0 --model-ema-decay 0.9996 --finetune <22k-pretrained model> --epochs 30 --mixup 0.01 --cooldown-epochs 10 --interpolation bicubic  --lr-scale 0.05 --drop-path 0.2 --cutmix 0.3 --use-chk --fine-22k --ema-finetune

If the GPU memory is not enough, please use checkpoint '--use-chk'.

Cite CSWin Transformer

@misc{dong2021cswin,
      title={CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows}, 
        author={Xiaoyi Dong and Jianmin Bao and Dongdong Chen and Weiming Zhang and Nenghai Yu and Lu Yuan and Dong Chen and Baining Guo},
        year={2021},
        eprint={2107.00652},
        archivePrefix={arXiv},
        primaryClass={cs.CV}
}

Acknowledgement

This repository is built using the timm library and the DeiT repository.

License

This project is licensed under the license found in the LICENSE file in the root directory of this source tree.

Microsoft Open Source Code of Conduct

Contact Information

For help or issues using CSWin Transformer, please submit a GitHub issue.

For other communications related to CSWin Transformer, please contact Jianmin Bao ([email protected]), Dong Chen ([email protected]).

Comments
  • About the patches_resolution of the segmentation model

    About the patches_resolution of the segmentation model

    Hello, this work is interesting but I have some questions about the 'patches_resolution' of the segmentation model. I notice that the long side of the cross-shaped windows is the 'patches_resolution' rather than the real feature resoulution. For example, in the stage-3, the long side is 224 / 16 = 14. Do I understand it correctly? Does that make it impossible to exchannge information outside the 'patches_resolution' ?

    opened by danczs 2
  • The results of downstream task by my realization are poor

    The results of downstream task by my realization are poor

    There are some questions:

    1. the split size is still [1 2 7 7]?
    2. last stage branch_num is 2 or 1 ? The downstream task image resolution in last stages cannot equal to 7(split size). If not 1, the pretrained weights size is not matched
    3. pading is right in my realization ? pad_l = pad_t = 0 pad_r = (W_sp - W % W_sp) % W_sp pad_b = (H_sp - H % H_sp) % H_sp q = q.transpose(-2,-1).contiguous().view(B, H, W, C) k = q.transpose(-2,-1).contiguous().view(B, H, W, C) v = q.transpose(-2,-1).contiguous().view(B, H, W, C) if pad_r > 0 or pad_b > 0: q = F.pad(q, (0, 0, pad_l, pad_r, pad_t, pad_b)) k = F.pad(k, (0, 0, pad_l, pad_r, pad_t, pad_b)) v = F.pad(v, (0, 0, pad_l, pad_r, pad_t, pad_b)) _, Hp, Wp, _ = q.shape
    opened by Sunting78 2
  • Experiment setting for semantic segmentation

    Experiment setting for semantic segmentation

    Hi, thank you for the code. I implemented CSwin-T with FPN for semantic segmentation in ADE20K but couldn't reach the mIoU value of 48.2 as mentioned by you in the table. The maximum I could get was 39.9 mIoU, it will be great if you could share the exact experiment settings you used? Thanks

    opened by AnukritiSinghh 2
  • CSWin significantly slower than Swin?

    CSWin significantly slower than Swin?

    Greetings,

    From my benchmarks I have noticed that CSwin seems to be significantly slower than Swin when it comes to inference times, is this the expected behavior? While I can get predictions as fast as 20 miliseconds on Swin Large 384 it takes above 900 milisecond on CSWin_144_24322_large_384.

    I performed tests using FP16, torchscript, optimize_for_inference and torch.inference_mode

    opened by ErenBalatkan 2
  • Pretrained settings for object detection

    Pretrained settings for object detection

    Hi, I'm impressed by your excellent work.

    I have a question.

    I wonder which type of the pre-trained weights (224x224 or 384x384 finetuned) is used for object detection.

    I know both 224x224 and 384x384 are pre-trained on ImageNet-1k.

    opened by youngwanLEE 2
  • Error about building 384 models

    Error about building 384 models

    The code: https://github.com/microsoft/CSWin-Transformer/blob/d8be74a7833898f7bd9c77eb8c051d1b8bd5d753/models/cswin.py#L407 shoud be:

    model = CSWinTransformer(img_size=384, patch_size=4, embed_dim=96, depth=[2,4,32,2],
    

    And as the same: https://github.com/microsoft/CSWin-Transformer/blob/d8be74a7833898f7bd9c77eb8c051d1b8bd5d753/models/cswin.py#L414

    opened by TingquanGao 2
  • The problem is shown in the figure

    The problem is shown in the figure

    model = CSWinTransformer(patch_size=4, embed_dim=96, depth=[2,4,32,2], split_size=[1,2,12,12], num_heads=[4,8,16,32], mlp_ratio=4.).cuda().eval() inp = torch.rand(1, 3, 224, 224).cuda() outs = model(inp) for out in outs: print(out.shape)

    RuntimeError: shape '[1, 192, 1, 14, 1, 12]' is invalid for input of size 37632

    why? image

    opened by rui-cf 2
  • about the test result on imagenet-2012

    about the test result on imagenet-2012

    Hi! I've test the CSwin-Tiny-224 released pretrained weight, this is my data transforms during testing:

    DEFAULT_CROP_SIZE = 0.9
    scale_size = int(math.floor(image_size / DEFAULT_CROP_SIZE))
    transform = transforms.Compose(
            [
                transforms.Resize(scale_size, interpolation=3)  # 3: bibubic
                if image_size == 224
                else transforms.Resize(image_size, interpolation=3),
                transforms.CenterCrop(image_size),
                transforms.ToTensor(),
                transforms.Normalize(IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD),
            ]
        )
    

    I can only get 80.5% on imagenet2012 dataset which is inconsistent with the results as you mentioned in this repo, did I miss some details about the data-augmentation during testing?

    opened by rentainhe 1
  • CSwin Code for Segmentation with MMSegmentation

    CSwin Code for Segmentation with MMSegmentation

    Hi, Thank you for your work! I wonder if you plan to release the mmsegmentation code you used for the downstream segmentation task, just like in Swin-Transformer repo.

    Best,

    opened by WalBouss 1
  • How do you produce Table 9  (ablation on different attention mecahnisms) in the  paper?

    How do you produce Table 9 (ablation on different attention mecahnisms) in the paper?

    Hi, thanks for your nice work. I'm doing some comparison on different attention mechanisms, and want to follow your experimental settings. I meet two problems:

    1. Why the reported mIoU is 41.9 for Swin-T in Table 9, while it is 46.1 in Swin Paper?
    2. Can you provide detailed experimental settings for semantic segmentation and object detection in table 9 ?
    opened by rayleizhu 0
  • about the setting of --use_chk

    about the setting of --use_chk

    give the parameter of --use_chk can launch the torch.utils.checkpoint to save the GPU memory, and I wonder if this could hurt the final performance, thanks a lot!

    opened by go-ahead-maker 0
  • Input image normalization parameters for semantic segmentation.

    Input image normalization parameters for semantic segmentation.

    Hey, guys, cool work!

    Unfortunately, for me it is not quite obvious, which normalization parameters (mean, std) did you use, when trained semantic segmentation model on ADE20K. Are they still IMAGENET_DEFAULT_MEAN or you used another values?

    opened by NikAleksFed 0
  • Using transfer to train over food101

    Using transfer to train over food101

    Hi all! I'm trying to train a model for food101 using the using the CSWin_64_12211_tiny_224 model with its pretrained values. The thing is, during execution it looks like its training from 0 rather than reusing the pretrained weights. By this I mean the initial top5 accuracy is around 5% but my initial thoughts is that it should be higher than this.

    For this I loaded the pretrained model and changed it's classification layer in a separate script and saved it for use as follows

    model = create_model( 'CSWin_64_12211_tiny_224', pretrained=True, num_classes=1000, drop_rate=0.0, drop_connect_rate=None, # DEPRECATED, use drop_path drop_path_rate=0.2, drop_block_rate=None, global_pool=None, bn_tf=False, bn_momentum=None, bn_eps=None, checkpoint_path='', img_size=224, use_chk=True) chk_path = './pretrained/cswin_tiny_224.pth' load_checkpoint(model, chk_path) model.reset_classifier(101, 'max')

    These are some of the runs I tried ` bash finetune.sh 1 --data ../food-101 --model CSWin_64_12211_tiny_224 -b 32 --lr 5e-6 --min-lr 5e-7 --weight-decay 1e-8 --amp --img-size 224 --warmup-epochs 0 --model-ema-decay 0.9998 --epochs 20 --mixup 0.1 --cooldown-epochs 10 --drop-path 0.7 --ema-finetune --lr-scale 1 --cutmix 0.1 --use-chk --num-classes 101 --pretrained --finetune ./pretrained/CSWin_64_12211_tiny_224101.pth

    bash finetune.sh 1 --data ../food-101 --model CSWin_64_12211_tiny_224 -b 32 --lr 2e-3 --weight-decay .05 --amp --img-size 224 --warmup-epochs 0 --model-ema-decay 0.9998 --epochs 20 --cooldown-epochs 10 --drop-path 0.2 --ema-finetune --cutmix 0.1 --use-chk --num-classes 101 --initial-checkpoint ./pretrained/CSWin_64_12211_tiny_224101.pth --lr-scale 1.0 --output ./full_base `

    Is there something I'm missing or a proper way I should try this?

    Thanks in advance for any help! :)

    opened by andreynz691 0
Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian Sign Language.

LIBRAS-Image-Classifier This project demonstrates the use of neural networks and computer vision to create a classifier that interprets the Brazilian

Aryclenio Xavier Barros 26 Oct 14, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
Dataset para entrenamiento de yoloV3 para 4 clases

Deteccion de objetos en video Este repo basado en el proyecto PyTorch YOLOv3 para correr detección de objetos sobre video. Construí sobre este proyect

1 Nov 01, 2021
A voice recognition assistant similar to amazon alexa, siri and google assistant.

kenyan-Siri Build an Artificial Assistant Full tutorial (video) To watch the tutorial, click on the image below Installation For windows users (run th

Alison Parker 3 Aug 19, 2022
VarCLR: Variable Semantic Representation Pre-training via Contrastive Learning

    VarCLR: Variable Representation Pre-training via Contrastive Learning New: Paper accepted by ICSE 2022. Preprint at arXiv! This repository contain

squaresLab 32 Oct 24, 2022
The implementation of 'Image synthesis via semantic composition'.

Image synthesis via semantic synthesis [Project Page] by Yi Wang, Lu Qi, Ying-Cong Chen, Xiangyu Zhang, Jiaya Jia. Introduction This repository gives

DV Lab 71 Jan 06, 2023
Anomaly Detection Based on Hierarchical Clustering of Mobile Robot Data

We proposed a new approach to detect anomalies of mobile robot data. We investigate each data seperately with two clustering method hierarchical and k-means. There are two sub-method that we used for

Zekeriyya Demirci 1 Jan 09, 2022
Object classification with basic computer vision techniques

naive-image-classification Object classification with basic computer vision techniques. Final assignment for the computer vision course I took at univ

2 Jul 01, 2022
Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr.

fix_m1_rgb Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr. No warranty provided for using th

Kevin Gao 116 Jan 01, 2023
Back to Basics: Efficient Network Compression via IMP

Back to Basics: Efficient Network Compression via IMP Authors: Max Zimmer, Christoph Spiegel, Sebastian Pokutta This repository contains the code to r

IOL Lab @ ZIB 1 Nov 19, 2021
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
Implementation of popular bandit algorithms in batch environments.

batch-bandits Implementation of popular bandit algorithms in batch environments. Source code to our paper "The Impact of Batch Learning in Stochastic

Danil Provodin 2 Sep 11, 2022
Unofficial TensorFlow implementation of Protein Interface Prediction using Graph Convolutional Networks.

[TensorFlow] Protein Interface Prediction using Graph Convolutional Networks Unofficial TensorFlow implementation of Protein Interface Prediction usin

YeongHyeon Park 9 Oct 25, 2022
The implementation of ICASSP 2020 paper "Pixel-level self-paced learning for super-resolution"

Pixel-level Self-Paced Learning for Super-Resolution This is an official implementaion of the paper Pixel-level Self-Paced Learning for Super-Resoluti

Elon Lin 41 Dec 15, 2022
Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Code and data to accompany the camera-ready version of "Cross-Attention is All You Need: Adapting Pretrained Transformers for Machine Translation" in EMNLP 2021

Mozhdeh Gheini 16 Jul 16, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Jan 04, 2023
Exploring Simple Siamese Representation Learning

G-SimSiam A PyTorch implementation which refers to repo for the paper Exploring Simple Siamese Representation Learning by Xinlei Chen & Kaiming He Add

zhuyun 1 Dec 19, 2021
Papers about explainability of GNNs

Papers about explainability of GNNs

Dongsheng Luo 236 Jan 04, 2023
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
A Simulation Environment to train Robots in Large Realistic Interactive Scenes

iGibson: A Simulation Environment to train Robots in Large Realistic Interactive Scenes iGibson is a simulation environment providing fast visual rend

Stanford Vision and Learning Lab 493 Jan 04, 2023