This is an official implementation of CvT: Introducing Convolutions to Vision Transformers.

Overview

Introduction

This is an official implementation of CvT: Introducing Convolutions to Vision Transformers. We present a new architecture, named Convolutional vision Transformers (CvT), that improves Vision Transformers (ViT) in performance and efficienty by introducing convolutions into ViT to yield the best of both disignes. This is accomplished through two primary modifications: a hierarchy of Transformers containing a new convolutional token embedding, and a convolutional Transformer block leveraging a convolutional projection. These changes introduce desirable properties of convolutional neural networks (CNNs) to the ViT architecture (e.g. shift, scale, and distortion invariance) while maintaining the merits of Transformers (e.g. dynamic attention, global context, and better generalization). We validate CvT by conducting extensive experiments, showing that this approach achieves state-of-the-art performance over other Vision Transformers and ResNets on ImageNet-1k, with fewer parameters and lower FLOPs. In addition, performance gains are maintained when pretrained on larger dataset (e.g. ImageNet-22k) and fine-tuned to downstream tasks. Pre-trained on ImageNet-22k, our CvT-W24 obtains a top-1 accuracy of 87.7% on the ImageNet-1k val set. Finally, our results show that the positional encoding, a crucial component in existing Vision Transformers, can be safely removed in our model, simplifying the design for higher resolution vision tasks.

Main results

Models pre-trained on ImageNet-1k

Model Resolution Param GFLOPs Top-1
CvT-13 224x224 20M 4.5 81.6
CvT-21 224x224 32M 7.1 82.5
CvT-13 384x384 20M 16.3 83.0
CvT-32 384x384 32M 24.9 83.3

Models pre-trained on ImageNet-22k

Model Resolution Param GFLOPs Top-1
CvT-13 384x384 20M 16.3 83.3
CvT-32 384x384 32M 24.9 84.9
CvT-W24 384x384 277M 193.2 87.6

You can download all the models from our model zoo.

Quick start

Installation

Assuming that you have installed PyTroch and TorchVision, if not, please follow the officiall instruction to install them firstly. Intall the dependencies using cmd:

python -m pip install -r requirements.txt --user -q

The code is developed and tested using pytorch 1.7.1. Other versions of pytorch are not fully tested.

Data preparation

Please prepare the data as following:

|-DATASET
  |-imagenet
    |-train
    | |-class1
    | | |-img1.jpg
    | | |-img2.jpg
    | | |-...
    | |-class2
    | | |-img3.jpg
    | | |-...
    | |-class3
    | | |-img4.jpg
    | | |-...
    | |-...
    |-val
      |-class1
      | |-img5.jpg
      | |-...
      |-class2
      | |-img6.jpg
      | |-...
      |-class3
      | |-img7.jpg
      | |-...
      |-...

Run

Each experiment is defined by a yaml config file, which is saved under the directory of experiments. The directory of experiments has a tree structure like this:

experiments
|-{DATASET_A}
| |-{ARCH_A}
| |-{ARCH_B}
|-{DATASET_B}
| |-{ARCH_A}
| |-{ARCH_B}
|-{DATASET_C}
| |-{ARCH_A}
| |-{ARCH_B}
|-...

We provide a run.sh script for running jobs in local machine.

Usage: run.sh [run_options]
Options:
  -g|--gpus <1> - number of gpus to be used
  -t|--job-type <aml> - job type (train|test)
  -p|--port <9000> - master port
  -i|--install-deps - If install dependencies (default: False)

Training on local machine

bash run.sh -g 8 -t train --cfg experiments/imagenet/cvt/cvt-13-224x224.yaml

You can also modify the config paramters by the command line. For example, if you want to change the lr rate to 0.1, you can run the command:

bash run.sh -g 8 -t train --cfg experiments/imagenet/cvt/cvt-13-224x224.yaml TRAIN.LR 0.1

Notes:

  • The checkpoint, model, and log files will be saved in OUTPUT/{dataset}/{training config} by default.

Testing pre-trained models

bash run.sh -t test --cfg experiments/imagenet/cvt/cvt-13-224x224.yaml TEST.MODEL_FILE ${PRETRAINED_MODLE_FILE}

Citation

If you find this work or code is helpful in your research, please cite:

@article{wu2021cvt,
  title={Cvt: Introducing convolutions to vision transformers},
  author={Wu, Haiping and Xiao, Bin and Codella, Noel and Liu, Mengchen and Dai, Xiyang and Yuan, Lu and Zhang, Lei},
  journal={arXiv preprint arXiv:2103.15808},
  year={2021}
}

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
An experiment to bait a generalized frontrunning MEV bot

Honeypot 🍯 A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

0x1355 14 Nov 24, 2022
Code for project: "Learning to Minimize Remainder in Supervised Learning".

Learning to Minimize Remainder in Supervised Learning Code for project: "Learning to Minimize Remainder in Supervised Learning". Requirements and Envi

Yan Luo 0 Jul 18, 2021
MILK: Machine Learning Toolkit

MILK: MACHINE LEARNING TOOLKIT Machine Learning in Python Milk is a machine learning toolkit in Python. Its focus is on supervised classification with

Luis Pedro Coelho 610 Dec 14, 2022
TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

TensorFlow implementation of "A Simple Baseline for Bayesian Uncertainty in Deep Learning"

YeongHyeon Park 7 Aug 28, 2022
Pre-trained BERT Models for Ancient and Medieval Greek, and associated code for LaTeCH 2021 paper titled - "A Pilot Study for BERT Language Modelling and Morphological Analysis for Ancient and Medieval Greek"

Ancient Greek BERT The first and only available Ancient Greek sub-word BERT model! State-of-the-art post fine-tuning on Part-of-Speech Tagging and Mor

Pranaydeep Singh 22 Dec 08, 2022
PyTorch implementation of the paper Dynamic Token Normalization Improves Vision Transfromers.

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
Code for Mining the Benefits of Two-stage and One-stage HOI Detection

Status: Archive (code is provided as-is, no updates expected) PPO-EWMA [Paper] This is code for training agents using PPO-EWMA and PPG-EWMA, introduce

OpenAI 33 Dec 15, 2022
[Preprint] "Bag of Tricks for Training Deeper Graph Neural Networks A Comprehensive Benchmark Study" by Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang

Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study Codes for [Preprint] Bag of Tricks for Training Deeper Graph

VITA 101 Dec 29, 2022
Chainer Implementation of Semantic Segmentation using Adversarial Networks

Semantic Segmentation using Adversarial Networks Requirements Chainer (1.23.0) Differences Use of FCN-VGG16 instead of Dilated8 as Segmentor. Caution

Taiki Oyama 99 Jun 28, 2022
Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces"

Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces" This repo contains the implementation of GEBO algorithm.

Jaeyeon Ahn 2 Mar 22, 2022
PyTorch implementation of DCT fast weight RNNs

DCT based fast weights This repository contains the official code for the paper: Training and Generating Neural Networks in Compressed Weight Space. T

Kazuki Irie 4 Dec 24, 2022
A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration.

A python package simulating the quasi-2D pseudospin-1/2 Gross-Pitaevskii equation with NVIDIA GPU acceleration. Introduction spinor-gpe is high-level,

2 Sep 20, 2022
System Design course at HSE (2021)

System Design course at HSE (2021) Wiki-страница курса Структура репозитория: slides - директория с презентациями с занятий tasks - материалы для выпо

22 Dec 25, 2022
This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (ICLR 2022)

Equivariant Subgraph Aggregation Networks (ESAN) This repository contains the official code of the paper Equivariant Subgraph Aggregation Networks (IC

Beatrice Bevilacqua 59 Dec 13, 2022
Model serving at scale

Run inference at scale Cortex is an open source platform for large-scale machine learning inference workloads. Workloads Realtime APIs - respond to pr

Cortex Labs 7.9k Jan 06, 2023
Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training"

Saliency Guided Training Code implementing "Improving Deep Learning Interpretability by Saliency Guided Training" by Aya Abdelsalam Ismail, Hector Cor

8 Sep 22, 2022
Self-Supervised depth kalilia

Self-Supervised depth kalilia

24 Oct 15, 2022
Trading environnement for RL agents, backtesting and training.

TradzQAI Trading environnement for RL agents, backtesting and training. Live session with coinbasepro-python is finaly arrived ! Available sessions: L

Tony Denion 164 Oct 30, 2022
Barbershop: GAN-based Image Compositing using Segmentation Masks (SIGGRAPH Asia 2021)

Barbershop: GAN-based Image Compositing using Segmentation Masks Barbershop: GAN-based Image Compositing using Segmentation Masks Peihao Zhu, Rameen A

Peihao Zhu 928 Dec 30, 2022
一个多语言支持、易使用的 OCR 项目。An easy-to-use OCR project with multilingual support.

AgentOCR 简介 AgentOCR 是一个基于 PaddleOCR 和 ONNXRuntime 项目开发的一个使用简单、调用方便的 OCR 项目 本项目目前包含 Python Package 【AgentOCR】 和 OCR 标注软件 【AgentOCRLabeling】 使用指南 Pytho

AgentMaker 98 Nov 10, 2022