Official code for "Focal Self-attention for Local-Global Interactions in Vision Transformers"

Overview

Focal Transformer

PWC PWC PWC PWC PWC PWC

This is the official implementation of our Focal Transformer -- "Focal Self-attention for Local-Global Interactions in Vision Transformers", by Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Xiyang Dai, Bin Xiao, Lu Yuan and Jianfeng Gao.

Introduction

focal-transformer-teaser

Our Focal Transfomer introduced a new self-attention mechanism called focal self-attention for vision transformers. In this new mechanism, each token attends the closest surrounding tokens at fine granularity but the tokens far away at coarse granularity, and thus can capture both short- and long-range visual dependencies efficiently and effectively.

With our Focal Transformers, we achieved superior performance over the state-of-the-art vision Transformers on a range of public benchmarks. In particular, our Focal Transformer models with a moderate size of 51.1M and a larger size of 89.8M achieve 83.6 and 84.0 Top-1 accuracy, respectively, on ImageNet classification at 224x224 resolution. Using Focal Transformers as the backbones, we obtain consistent and substantial improvements over the current state-of-the-art methods for 6 different object detection methods trained with standard 1x and 3x schedules. Our largest Focal Transformer yields 58.7/58.9 box mAPs and 50.9/51.3 mask mAPs on COCO mini-val/test-dev, and 55.4 mIoU on ADE20K for semantic segmentation.

Benchmarking

Image Classification on ImageNet-1K

Model Pretrain Use Conv Resolution [email protected] [email protected] #params FLOPs Checkpoint Config
Focal-T IN-1K No 224 82.2 95.9 28.9M 4.9G download yaml
Focal-T IN-1K Yes 224 82.7 96.1 30.8M 4.9G download yaml
Focal-S IN-1K No 224 83.6 96.2 51.1M 9.4G download yaml
Focal-B IN-1K No 224 84.0 96.5 89.8M 16.4G download yaml

Object Detection and Instance Segmentation on COCO

Mask R-CNN

Backbone Pretrain Lr Schd #params FLOPs box mAP mask mAP
Focal-T ImageNet-1K 1x 49M 291G 44.8 41.0
Focal-T ImageNet-1K 3x 49M 291G 47.2 42.7
Focal-S ImageNet-1K 1x 71M 401G 47.4 42.8
Focal-S ImageNet-1K 3x 71M 401G 48.8 43.8
Focal-B ImageNet-1K 1x 110M 533G 47.8 43.2
Focal-B ImageNet-1K 3x 110M 533G 49.0 43.7

RetinaNet

Backbone Pretrain Lr Schd #params FLOPs box mAP
Focal-T ImageNet-1K 1x 39M 265G 43.7
Focal-T ImageNet-1K 3x 39M 265G 45.5
Focal-S ImageNet-1K 1x 62M 367G 45.6
Focal-S ImageNet-1K 3x 62M 367G 47.3
Focal-B ImageNet-1K 1x 101M 514G 46.3
Focal-B ImageNet-1K 3x 101M 514G 46.9

Other detection methods

Backbone Pretrain Method Lr Schd #params FLOPs box mAP
Focal-T ImageNet-1K Cascade Mask R-CNN 3x 87M 770G 51.5
Focal-T ImageNet-1K ATSS 3x 37M 239G 49.5
Focal-T ImageNet-1K RepPointsV2 3x 45M 491G 51.2
Focal-T ImageNet-1K Sparse R-CNN 3x 111M 196G 49.0

Semantic Segmentation on ADE20K

Backbone Pretrain Method Resolution Iters #params FLOPs mIoU mIoU (MS)
Focal-T ImageNet-1K UPerNet 512x512 160k 62M 998G 45.8 47.0
Focal-S ImageNet-1K UPerNet 512x512 160k 85M 1130G 48.0 50.0
Focal-B ImageNet-1K UPerNet 512x512 160k 126M 1354G 49.0 50.5
Focal-L ImageNet-22K UPerNet 640x640 160k 240M 3376G 54.0 55.4

Getting Started

Citation

If you find this repo useful to your project, please consider to cite it with following bib:

@misc{yang2021focal,
    title={Focal Self-attention for Local-Global Interactions in Vision Transformers}, 
    author={Jianwei Yang and Chunyuan Li and Pengchuan Zhang and Xiyang Dai and Bin Xiao and Lu Yuan and Jianfeng Gao},
    year={2021},
    eprint={2107.00641},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}

Acknowledgement

Our codebase is built based on Swin-Transformer. We thank the authors for the nicely organized code!

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Implementation of CVPR'2022:Surface Reconstruction from Point Clouds by Learning Predictive Context Priors

Surface Reconstruction from Point Clouds by Learning Predictive Context Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository c

136 Dec 12, 2022
Vector.ai assignment

fabio-tests-nisargatman Low Level Approach: ###Tables: continents: id*, name, population, area, createdAt, updatedAt countries: id*, name, population,

Ravi Pullagurla 1 Nov 09, 2021
A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swar.

Omni-swarm A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swarm Introduction Omni-swarm is a decentralized omn

HKUST Aerial Robotics Group 99 Dec 23, 2022
Simplified interface for TensorFlow (mimicking Scikit Learn) for Deep Learning

SkFlow has been moved to Tensorflow. SkFlow has been moved to http://github.com/tensorflow/tensorflow into contrib folder specifically located here. T

3.2k Dec 29, 2022
PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation.

PyTorch implementation of Progressive Growing of GANs for Improved Quality, Stability, and Variation. Warning: the master branch might collapse. To ob

559 Dec 14, 2022
Bilinear attention networks for visual question answering

Bilinear Attention Networks This repository is the implementation of Bilinear Attention Networks for the visual question answering and Flickr30k Entit

Jin-Hwa Kim 506 Nov 29, 2022
The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

ycj_project 1 Jan 18, 2022
Codebase for INVASE: Instance-wise Variable Selection - 2019 ICLR

Codebase for "INVASE: Instance-wise Variable Selection" Authors: Jinsung Yoon, James Jordon, Mihaela van der Schaar Paper: Jinsung Yoon, James Jordon,

Jinsung Yoon 50 Nov 11, 2022
LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models

LaneDet is an open source lane detection toolbox based on PyTorch that aims to pull together a wide variety of state-of-the-art lane detection models. Developers can reproduce these SOTA methods and

TuZheng 405 Jan 04, 2023
The code for SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network.

SAG-DTA The code is the implementation for the paper 'SAG-DTA: Prediction of Drug–Target Affinity Using Self-Attention Graph Network'. Requirements py

Shugang Zhang 7 Aug 02, 2022
A flexible ML framework built to simplify medical image reconstruction and analysis experimentation.

meddlr Getting Started Meddlr is a config-driven ML framework built to simplify medical image reconstruction and analysis problems. Installation To av

Arjun Desai 36 Dec 16, 2022
This repository contains a Ruby API for utilizing TensorFlow.

tensorflow.rb Description This repository contains a Ruby API for utilizing TensorFlow. Linux CPU Linux GPU PIP Mac OS CPU Not Configured Not Configur

somatic labs 825 Dec 26, 2022
Supervised Contrastive Learning for Product Matching

Contrastive Product Matching This repository contains the code and data download links to reproduce the experiments of the paper "Supervised Contrasti

Web-based Systems Group @ University of Mannheim 18 Dec 10, 2022
Encode and decode text application

Text Encoder and Decoder Encode and decode text in many ways using this application! Encode in: ASCII85 Base85 Base64 Base32 Base16 Url MD5 Hash SHA-1

Alice 1 Feb 12, 2022
A new version of the CIDACS-RL linkage tool suitable to a cluster computing environment.

Fully Distributed CIDACS-RL The CIDACS-RL is a brazillian record linkage tool suitable to integrate large amount of data with high accuracy. However,

Robespierre Pita 5 Nov 04, 2022
Answer a series of contextually-dependent questions like they may occur in natural human-to-human conversations.

SCAI-QReCC-21 [leaderboards] [registration] [forum] [contact] [SCAI] Answer a series of contextually-dependent questions like they may occur in natura

19 Sep 28, 2022
Low Complexity Channel estimation with Neural Network Solutions

Interpolation-ResNet Invited paper for WSA 2021, called 'Low Complexity Channel estimation with Neural Network Solutions'. Low complexity residual con

Dianxin 10 Dec 10, 2022
Code, final versions, and information on the Sparkfun Graphical Datasheets

Graphical Datasheets Code, final versions, and information on the SparkFun Graphical Datasheets. Generated Cells After Running Script Example Complete

SparkFun Electronics 102 Jan 05, 2023
Implementation of the 😇 Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones

HaloNet - Pytorch Implementation of the Attention layer from the paper, Scaling Local Self-Attention For Parameter Efficient Visual Backbones. This re

Phil Wang 189 Nov 22, 2022
Code base for the paper "Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation"

This repository contains code for the paper Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiati

8 Aug 28, 2022