Workshop for student hackathons focused on IoT dev

Overview

Scenario: The Mutt Matcher (IoT version)

According to the World Health Organization there are more than 200 million stray dogs worldwide. The American Society for the Prevention of Cruelty to Animals estimates over 3 million dogs enter their shelters annually - about 6 dogs per minute! Anything that can reduce the time and effort to take in strays can potentially help millions of dogs every year.

Different breeds have different needs, or react differently to people, so when a stray or lost dog is found, identifying the breed can be a great help.

A Raspberry Pi with a camera

Your team has been asked by a fictional animal shelter to build a Mutt Matcher - a device to help determine the breed of a dog when it has been found. This will be an IoT (Internet of Things) device based around a Raspberry Pi with a camera, and will take a photo of the dog, and then use an image classifier Machine learning (ML) model to determine the breed, before uploading the results to a web-based IoT application.

This device will help workers and volunteers to be able to quickly detect the breed and make decisions on the best way to approach and care for the dog.

An application dashboard showing the last detected breed as a German wire pointer, as well as a pie chart of detected breeds

The animal shelter has provided a set of images for a range of dog breeds to get you started. These can be used to train the ML model using a service called Custom Vision.

Pictures of dogs

Prerequisites

Each team member will need an Azure account. With Azure for Students, you can access $100 in free credit, and a large suite of free services!

Your team should be familiar with the following:

Hardware

To complete this workshop fully, ideally you will need a Raspberry Pi (model 3 or 4), and a camera. The camera can be a Raspberry Pi Camera module, or a USB web cam.

๐Ÿ’ If you don't have a Raspberry Pi, you can run this workshop using a PC or Mac to simulate an IoT device, with either a built in or external webcam.

Software

Each member of your team will also need the following software installed:

Resources

A series of resources will be provided to help your team determine the appropriate steps for completion. The resources provided should provide your team with enough information to achieve each goal.

These resources include:

  • Appropriate links to documentation to learn more about the services you are using and how to do common tasks
  • A pre-built application template for the cloud service part of your IoT application
  • Full source code for your IoT device

If you get stuck, you can always ask a mentor for additional help.

Exploring the application

Icons for Custom Vision, IoT Central and Raspberry Pi

The application your team will build will consist of 3 components:

  • An image classifier running in the cloud using Microsoft Custom Vision

  • An IoT application running in the cloud using Azure IoT Central

  • A Raspberry Pi based IoT device with a camera

The application flow described below

When a dog breed needs to be detected:

  1. A button on the IoT application is clicked

  2. The IoT application sends a command to the IoT device to detect the breed

  3. The IoT device captures an image using it's camera

  4. The image is sent to the image classifier ML model in the cloud to detect the breed

  5. The results of the classification are sent back to the IoT device

  6. The detected breed is sent from the IoT device to the IoT application

Goals

Your team will set up the Pi, ML model and IoT application, then connect everything to gether by deploying code to the IoT device.

๐Ÿ’ Each goal below defines what you need to achieve, and points you to relevant on-line resources that will show you how the cloud services or tools work. The aim here is not to provide you with detailed steps to complete the task, but allow you to explore the documentation and learn more about the services as you work out how to complete each goal.

  1. Set up your Raspberry Pi and camera: You will need to set up a clean install of Raspberry Pi OS on your Pi and ensure all the required software is installed.

    ๐Ÿ’ป If you are using a PC or Mac instead of a Pi, your team will need to set this up instead.

  2. Train your ML model: Your team will need to train the ML model in the cloud using Microsoft Custom Vision. You can train and test this model using the images that have been provided by the animal shelter.

  3. Set up your IoT application: Your team will set up an IoT application in the cloud using IoT Central, an IoT software-as-a-service (SaaS) platform. You will be provided with a pre-built application template to use.

  4. Deploy device code to your Pi: The code for the IoT device needs to be configured and deployed to the Raspberry Pi. You will then be able to test out your application.

    ๐Ÿ’ป If you are using a PC or Mac instead of a Pi, your team will need to run the device code locally.

๐Ÿ’ The first 3 goals can be worked on concurrently, with different team members working on different steps. Once these 3 are completed, the final step can be worked on by the team.

Validation

This workshop is designed to be a goal-oriented self-exploration of Azure and related technologies. Your team can validate some of the goals using the supplied validation scripts, and instructions are provided where relevant. Your team can then validate the final solution by using the IoT device to take a picture of one of the provided testing images and ensuring the correct result appears in the IoT application.

Where do we go from here?

This project is designed as a potential seed for ideas and future development during your hackathon. Other hack ideas for similar IoT devices that use image classification include:

  • Trash sorting into landfill, recycling, and compost.

  • Identification of disease in plant leaves.

  • Detecting skin cancer by classification of moles.

Improvements you could make to this device include:

  • Adding hardware such as a button to take a photograph, instead of relying on the IoT application.

  • Adding a screen or LCD display to the IoT device to show the breed.

  • Migrating the image classifier to the edge to allow the device to run without connectivity using Azure IoT Edge.

Learn more

You can learn more about using Custom Vision to train image classifiers and object detectors using the following resources:

You can learn more about Azure IoT Central using the following resources:

If you enjoy working with IoT, you can learn more using the following resource:

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

Trademarks

This project may contain trademarks or logos for projects, products, or services. Authorized use of Microsoft trademarks or logos is subject to and must follow Microsoft's Trademark & Brand Guidelines. Use of Microsoft trademarks or logos in modified versions of this project must not cause confusion or imply Microsoft sponsorship. Any use of third-party trademarks or logos are subject to those third-party's policies.

Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Software framework to enable agile robotic assembly applications.

ConnTact Software framework to enable agile robotic assembly applications. (Connect + Tactile) Overview Installation Development of framework was done

Southwest Research Institute Robotics 29 Dec 01, 2022
Ansible tools for operating and managing fleets of Blinksticks in harmony using the Blinkstick Python library.

Ansible tools for operating and managing fleets of Blinksticks in harmony using the Blinkstick Python library.

Greg Robinson 3 Aug 10, 2022
DNP3 Stalker is a project to analyze and interact with DNP3 devices

DNP3 Stalker Purpose DNP3 Stalker is a project to analyze and interact with DNP3

Cutaway Security, LLC. 2 Feb 10, 2022
A Raspberry Pi Pico plant sensor hub coded in Micropython

plantsensor A Raspberry Pi Pico plant sensor hub coded in Micropython I used: 1x Raspberry Pi Pico - microcontroller 1x Waveshare Pico OLED 1.3 - scre

78 Sep 20, 2022
Fener ROS2 package version 2

Fener's ROS2 codes that runs on the vehicle. This node contains basic sensing and actuation nodes for vehicle control. Also example applications will be added.

Muhammed Sezer 1 Jan 18, 2022
Modi2-firmware-updater - MODI+ Firmware Updater With Python

MODI+ Firmware Updater ์‹คํ–‰ ์ค€๋น„ python3(ํŒŒ์ด์ฌ3.9 ํ˜น์€ ๊ทธ ์ด์ƒ์˜ ๋ฒ„์ „)๋ฅผ ์ปดํ“จํ„ฐ์— ์„ค์น˜ python3 -m pip

LUXROBO 1 Feb 04, 2022
Example for Calculating Robot Dynamics Using Pinocchio Library

A Example for Calculating Robot Dynamics Using Pinocchio Library Developed by: Xinyang Tian. Platform: Linux + Pinocchio. In this work, i use Pinocchi

Rot_Tianers 33 Dec 28, 2022
Red Light Green Light Robot

Red Light Green Light Robot The primary problem addressed by our project is robotic follower behavior i.e. maintaining distance from a moving target.

Will Romano 2 Nov 20, 2021
Raspberry Pi Power Button - Wake/Power Off/Restart(Double Press)

Control Raspberry pi with physically attached button. Wake, Power Off, and Restart (Double Press) . Python3 script runs as a service with easy installation.

Stas Yakobov 16 Oct 22, 2022
DOS-like OS for RP2040 basic microcontroller boards

Micropython DOS-like OS for RP2040 microcontroller boards. Check out the demo video at https://www.youtube.com/watch?v=Az_oiq8GE4Y To start the OS typ

RetiredWizard 58 Dec 27, 2022
gdsfactory is an EDA (electronics design automation) tool to Layout Integrated Circuits.

gdsfactory 3.5.5 gdsfactory is an EDA (electronics design automation) tool to Layout Integrated Circuits. It is build on top of phidl gdspy and klayou

147 Jan 04, 2023
Designed a system that can efficiently sort recyclables and transfer them to corresponding bins using Python, a Raspberry Pi, and Quanser Labs.

System for Sorting and Recycling Containers - Project 3 Table of contents Overview The challenge Screenshot My process Built with Code snippets What I

Mit Patel 2 Dec 02, 2022
raspberry pi servo control using pca9685

RPi_servo-control_pca9685 raspberry pi 180ยฐ servo control using pca9685 Requirements Requires you to have the adafruit servokit library installed You

1 Jan 10, 2022
Keystroke logging, often referred to as keylogging or keyboard capturing

Keystroke logging, often referred to as keylogging or keyboard capturing, is the action of recording the keys struck on a keyboard, typically covertly, so that a person using the keyboard is unaware

Bhumika R 2 Jan 11, 2022
Lego Mindstorms EV3 and Lego Spike Prime

Lego Mindstorms EV3 and Lego Spike Prime What is FLL? The FIRST LEGO League Challenge Robotics Tournament challenges students from 9 to 16 years old t

Danimar Campos da Costa 1 Nov 14, 2021
A versatile program that uses the raspberry pi camera and provides it as a service

PiCameleon Is a daemon program meant to provide the RaspberryPi Camera as a service while running according to a configuration.

Andrรฉ Esser 52 Oct 16, 2022
A Home Assistant sensor that tells you what holiday is next

Next Holiday Sensor This sensor tells you what holiday is coming up next. You can use it to set holiday light colors or other scenes. The state of the

Nick Touran 20 Dec 04, 2022
A simple small scale electric car was build which can be driven by remote control and features a fully autonomous parking procedure.

personal-autonomous-parking-car-raspberry A simple electric car model was build using Raspbery pi. The car has remote control and autonomous operation

Kostas Ziovas 2 Jan 26, 2022
A refreshed Python toolbox for building complex digital hardware

A refreshed Python toolbox for building complex digital hardware

nMigen 1k Jan 05, 2023
Pi-hole with Inky pHAT ePaper display

Pi-hole with Inky pHAT ePaper display This is my Pi-hole with an ePaper display.

11 Sep 13, 2022