VoxHRNet - Whole Brain Segmentation with Full Volume Neural Network

Related tags

Deep LearningVoxHRNet
Overview

VoxHRNet

This is the official implementation of the following paper:

Whole Brain Segmentation with Full Volume Neural Network

Yeshu Li, Jonathan Cui, Yilun Sheng, Xiao Liang, Jingdong Wang, Eric I-Chao Chang, Yan Xu

Computerized Medical Imaging and Graphics

[arXiv]

Network

architecture

Installation

The following environments/libraries are required:

  • Python 3
  • yacs
  • SimpleITK
  • apex
  • pytorch
  • nibabel
  • numpy
  • scikit-image
  • scipy

Quick Start

Data Preparation

Download the LPBA40 and Hammers n30r95 datasets.

After renaming, your directory tree should look like:

$ROOT
├── data
│   └── LPBA40_N4_RN
│       ├── aseg_TEST001.nii.gz
│       ├── ...
│       ├── aseg_TEST010.nii.gz
│       ├── aseg_TRAIN001.nii.gz
│       ├── ...
│       ├── aseg_TRAIN027.nii.gz
│       ├── aseg_VALIDATE001.nii.gz
│       ├── ...
│       ├── aseg_VALIDATE003.nii.gz
│       ├── orig_TEST001.nii.gz
│       ├── ...
│       ├── orig_TEST010.nii.gz
│       ├── orig_TRAIN001.nii.gz
│       ├── ...
│       ├── orig_TRAIN027.nii.gz
│       ├── orig_VALIDATE001.nii.gz
│       ├── ...
│       └── orig_VALIDATE003.nii.gz
└── VoxHRNet
    ├── voxhrnet.py
    ├── ...
    └── train.py

Create a YACS configuration file and make changes for specific training/test settings accordingly. We use config_lpba.yaml as an example as follows.

Train

Run

python3 train.py --cfg config_lpba.yaml

Test

Run

python3 test.py --cfg config_lpba.yaml

Pretrained Models

For the LPBA40 dataset, we number the subjects from 1-40 alphabetically and split them into 4 folds sequentially. The k-th fold is selected as the test set in the k-th split.

For the Hammers n30r95 dataset, the first 20 subjects and last 10 subjects are chosen as the training and test set respectively.

Their pretrained models can be found in the release page of this repository.

Citation

Please cite our work if you find it useful in your research:

@article{LI2021101991,
title = {Whole brain segmentation with full volume neural network},
journal = {Computerized Medical Imaging and Graphics},
volume = {93},
pages = {101991},
year = {2021},
issn = {0895-6111},
doi = {https://doi.org/10.1016/j.compmedimag.2021.101991},
url = {https://www.sciencedirect.com/science/article/pii/S0895611121001403},
author = {Yeshu Li and Jonathan Cui and Yilun Sheng and Xiao Liang and Jingdong Wang and Eric I.-Chao Chang and Yan Xu},
keywords = {Brain, Segmentation, Neural networks, Deep learning},
abstract = {Whole brain segmentation is an important neuroimaging task that segments the whole brain volume into anatomically labeled regions-of-interest. Convolutional neural networks have demonstrated good performance in this task. Existing solutions, usually segment the brain image by classifying the voxels, or labeling the slices or the sub-volumes separately. Their representation learning is based on parts of the whole volume whereas their labeling result is produced by aggregation of partial segmentation. Learning and inference with incomplete information could lead to sub-optimal final segmentation result. To address these issues, we propose to adopt a full volume framework, which feeds the full volume brain image into the segmentation network and directly outputs the segmentation result for the whole brain volume. The framework makes use of complete information in each volume and can be implemented easily. An effective instance in this framework is given subsequently. We adopt the 3D high-resolution network (HRNet) for learning spatially fine-grained representations and the mixed precision training scheme for memory-efficient training. Extensive experiment results on a publicly available 3D MRI brain dataset show that our proposed model advances the state-of-the-art methods in terms of segmentation performance.}
}

Acknowledgement

A large part of the code is borrowed from HRNet.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.opensource.microsoft.com.

When you submit a pull request, a CLA bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., status check, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact [email protected] with any additional questions or comments.

You might also like...
BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net
BraTs-VNet - BraTS(Brain Tumour Segmentation) using V-Net

BraTS(Brain Tumour Segmentation) using V-Net This project is an approach to dete

Recovering Brain Structure Network Using Functional Connectivity
Recovering Brain Structure Network Using Functional Connectivity

Recovering-Brain-Structure-Network-Using-Functional-Connectivity Framework: Papers: This repository provides a PyTorch implementation of the models ad

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish
PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

PyZebrascope - an open-source Python platform for brain-wide neural activity imaging in behaving zebrafish

An attempt at the implementation of GLOM, Geoffrey Hinton's paper for emergent part-whole hierarchies from data
An attempt at the implementation of GLOM, Geoffrey Hinton's paper for emergent part-whole hierarchies from data

GLOM TensorFlow This Python package attempts to implement GLOM in TensorFlow, which allows advances made by several different groups transformers, neu

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation

HPRNet: Hierarchical Point Regression for Whole-Body Human Pose Estimation Official PyTroch implementation of HPRNet. HPRNet: Hierarchical Point Regre

minimizer-space de Bruijn graphs (mdBG) for whole genome assembly

rust-mdbg: Minimizer-space de Bruijn graphs (mdBG) for whole-genome assembly rust-mdbg is an ultra-fast minimizer-space de Bruijn graph (mdBG) impleme

Official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers
Official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers

Visual Parser (ViP) This is the official implementation of the paper Visual Parser: Representing Part-whole Hierarchies with Transformers. Key Feature

CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching(CVPR2021)

CFNet(CVPR 2021) This is the implementation of the paper CFNet: Cascade and Fused Cost Volume for Robust Stereo Matching, CVPR 2021, Zhelun Shen, Yuch

Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out) created with Python.
Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out) created with Python.

Hand Gesture Volume Controller Using this you can control your PC/Laptop volume by Hand Gestures (pinch-in, pinch-out). Code Firstly I have created a

Comments
  • How to get the LPBA40_N4_RN dataset for the example

    How to get the LPBA40_N4_RN dataset for the example

    Thanks for your great work. I'm trying to run the example but stuck by the dataset. It seems there are multiple LPBA40 datasets on the give site LPBA40, and the data file format are not nii as in the example. Is there a downloadable LPBA40_N4_RN dataset or could you give some details on how to generate the dataset in the example?

    opened by mgcyung 2
  • ACTION REQUIRED: Microsoft needs this private repository to complete compliance info

    ACTION REQUIRED: Microsoft needs this private repository to complete compliance info

    There are open compliance tasks that need to be reviewed for your VoxHRNet repo.

    Action required: 4 compliance tasks

    To bring this repository to the standard required for 2021, we require administrators of this and all Microsoft GitHub repositories to complete a small set of tasks within the next 60 days. This is critical work to ensure the compliance and security of your microsoft GitHub organization.

    Please take a few minutes to complete the tasks at: https://repos.opensource.microsoft.com/orgs/microsoft/repos/VoxHRNet/compliance

    • The GitHub AE (GitHub inside Microsoft) migration survey has not been completed for this private repository
    • No Service Tree mapping has been set for this repo. If this team does not use Service Tree, they can also opt-out of providing Service Tree data in the Compliance tab.
    • No repository maintainers are set. The Open Source Maintainers are the decision-makers and actionable owners of the repository, irrespective of administrator permission grants on GitHub.
    • Classification of the repository as production/non-production is missing in the Compliance tab.

    You can close this work item once you have completed the compliance tasks, or it will automatically close within a day of taking action.

    If you no longer need this repository, it might be quickest to delete the repo, too.

    GitHub inside Microsoft program information

    More information about GitHub inside Microsoft and the new GitHub AE product can be found at https://aka.ms/gim.

    FYI: current admins at Microsoft include @scarlett2018, @EricChangMSR, @simon1727

    opened by microsoft-github-operations[bot] 0
Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Public implementation of "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression" from CoRL'21

Self-Supervised Reward Regression (SSRR) Codebase for CoRL 2021 paper "Learning from Suboptimal Demonstration via Self-Supervised Reward Regression "

19 Dec 12, 2022
Pneumonia Detection using machine learning - with PyTorch

Pneumonia Detection Pneumonia Detection using machine learning. Training was done in colab: DEMO: Result (Confusion Matrix): Data I uploaded my datase

Wilhelm Berghammer 12 Jul 07, 2022
Focal and Global Knowledge Distillation for Detectors

FGD Paper: Focal and Global Knowledge Distillation for Detectors Install MMDetection and MS COCO2017 Our codes are based on MMDetection. Please follow

Mesopotamia 261 Dec 23, 2022
A Lightweight Experiment & Resource Monitoring Tool 📺

Lightweight Experiment & Resource Monitoring 📺 "Did I already run this experiment before? How many resources are currently available on my cluster?"

170 Dec 28, 2022
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
This is a Deep Leaning API for classifying emotions from human face and human audios.

Emotion AI This is a Deep Leaning API for classifying emotions from human face and human audios. Starting the server To start the server first you nee

crispengari 5 Oct 02, 2022
The mini-MusicNet dataset

mini-MusicNet A music-domain dataset for multi-label classification Music transcription is sequence-to-sequence prediction problem: given an audio per

John Thickstun 4 Nov 09, 2022
Arabic Car License Recognition. A solution to the kaggle competition Machathon 3.0.

Transformers Arabic licence plate recognition 🚗 Solution to the kaggle competition Machathon 3.0. Ranked in the top 6️⃣ at the final evaluation phase

Noran Hany 17 Dec 04, 2022
This repo contains the official implementations of EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis

EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis This repo contains the official implementations of EigenDamage: Structured Prunin

Chaoqi Wang 107 Apr 20, 2022
yolox_backbone is a deep-learning library and is a collection of YOLOX Backbone models.

YOLOX-Backbone yolox-backbone is a deep-learning library and is a collection of YOLOX backbone models. Install pip install yolox-backbone Load a Pret

Yonghye Kwon 21 Dec 28, 2022
(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework

(Py)TOD: Tensor-based Outlier Detection, A General GPU-Accelerated Framework Background: Outlier detection (OD) is a key data mining task for identify

Yue Zhao 127 Jan 05, 2023
Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

Neelesh C A 3 Oct 14, 2022
Key information extraction from invoice document with Graph Convolution Network

Key Information Extraction from Scanned Invoices Key information extraction from invoice document with Graph Convolution Network Related blog post fro

Phan Hoang 39 Dec 16, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet)

Hierarchical Cross-modal Talking Face Generation with Dynamic Pixel-wise Loss (ATVGnet) By Lele Chen , Ross K Maddox, Zhiyao Duan, Chenliang Xu. Unive

Lele Chen 218 Dec 27, 2022
CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhancement

CBREN This is the Pytorch implementation for our IEEE TCSVT paper : CBREN: Convolutional Neural Networks for Constant Bit Rate Video Quality Enhanceme

Zhao Hengrun 3 Nov 04, 2022
Algebraic effect handlers in Python

PyEffect: Algebraic effects in Python What IDK. Usage effects.handle(operation, handlers=None) effects.set_handler(effect, handler) Supported effects

Greg Werbin 5 Dec 27, 2021
[TIP2020] Adaptive Graph Representation Learning for Video Person Re-identification

Introduction This is the PyTorch implementation for Adaptive Graph Representation Learning for Video Person Re-identification. Get started git clone h

WuYiming 41 Dec 12, 2022
A Pytorch Implementation of a continuously rate adjustable learned image compression framework.

GainedVAE A Pytorch Implementation of a continuously rate adjustable learned image compression framework, Gained Variational Autoencoder(GainedVAE). N

39 Dec 24, 2022
A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs.

PYGON A Graph Neural Network Tool for Recovering Dense Sub-graphs in Random Dense Graphs. Installation This code requires to install and run the graph

Yoram Louzoun's Lab 0 Jun 25, 2021