[NeurIPS 2021] PyTorch Code for Accelerating Robotic Reinforcement Learning with Parameterized Action Primitives

Overview

Robot Action Primitives (RAPS)

This repository is the official implementation of Accelerating Robotic Reinforcement Learning via Parameterized Action Primitives (RAPS).

[Project Website]

Murtaza Dalal, Deepak Pathak*, Ruslan Salakhutdinov*
(* equal advising)

CMU

alt text

If you find this work useful in your research, please cite:

@inproceedings{dalal2021raps,
    Author = {Dalal, Murtaza and Pathak, Deepak and
              Salakhutdinov, Ruslan},
    Title = {Accelerating Robotic Reinforcement Learning via Parameterized Action Primitives},
    Booktitle = {NeurIPS},
    Year = {2021}
}

Requirements

To install dependencies, please run the following commands:

sudo apt-get update
sudo apt-get install curl \
    git \
    libgl1-mesa-dev \
    libgl1-mesa-glx \
    libglew-dev \
    libosmesa6-dev \
    software-properties-common \
    net-tools \
    unzip \
    vim \
    virtualenv \
    wget \
    xpra \
    xserver-xorg-dev
sudo apt-get install libglfw3-dev libgles2-mesa-dev patchelf
sudo mkdir /usr/lib/nvidia-000

Please add the following to your bashrc:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:~/.mujoco/mujoco200/bin
export MUJOCO_GL='egl'
export MKL_THREADING_LAYER=GNU
export D4RL_SUPPRESS_IMPORT_ERROR='1'
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib/nvidia-000

To install python requirements:

conda create -n raps python=3.7
conda activate raps
./setup_python_env.sh <absolute path to raps>

Training and Evaluation

Kitchen

Prior to running any experiments, make sure to run cd /path/to/raps/rlkit

single task env names:

  • microwave
  • kettle
  • slide_cabinet
  • hinge_cabinet
  • light_switch
  • top_left_burner

multi task env names:

  • microwave_kettle_light_top_left_burner //Sequential Multi Task 1
  • hinge_slide_bottom_left_burner_light //Sequential Multi Task 2

To train RAPS with Dreamer on any single task kitchen environment, run:

python experiments/kitchen/dreamer/dreamer_v2_single_task_primitives.py --mode here_no_doodad --exp_prefix <> --env <env name>

To train RAPS with Dreamer on the multi task kitchen environments, run:

python experiments/kitchen/dreamer/dreamer_v2_multi_task_primitives.py --mode here_no_doodad --exp_prefix <> --env <env name>

To train Raw Actions with Dreamer on any kitchen environment

python experiments/kitchen/dreamer/dreamer_v2_raw_actions.py --mode here_no_doodad --exp_prefix <> --env <env name>

To train RAPS with RAD on any single task kitchen environment

python experiments/kitchen/rad/rad_single_task_primitives.py --mode here_no_doodad --exp_prefix <> --env <env name>

To train RAPS with RAD on any multi task kitchen environment

python experiments/kitchen/rad/rad_multi_task_primitives.py --mode here_no_doodad --exp_prefix <> --env <env name>

To train Raw Actions with RAD on any kitchen environment

python experiments/kitchen/rad/rad_raw_actions.py --mode here_no_doodad --exp_prefix <> --env <env name>

To train RAPS with PPO on any single task kitchen environment

python experiments/kitchen/ppo/ppo_single_task_primitives.py --mode here_no_doodad --exp_prefix <> --env <env name>

To train RAPS with PPO on any multi task kitchen environment

python experiments/kitchen/ppo/ppo_multi_task_primitives.py --mode here_no_doodad --exp_prefix <> --env <env name>

To train Raw Actions with PPO on any kitchen environment

python experiments/kitchen/ppo/ppo_raw_actions.py --mode here_no_doodad --exp_prefix <> --env <env name>

Metaworld

single task env names

  • drawer-close-v2
  • soccer-v2
  • peg-unplug-side-v2
  • sweep-into-v2
  • assembly-v2
  • disassemble-v2

To train RAPS with Dreamer on any metaworld environment

python experiments/metaworld/dreamer/dreamer_v2_single_task_primitives.py --mode here_no_doodad --exp_prefix <> --env <env name>

To train Raw Actions with Dreamer on any metaworld environment

python experiments/metaworld/dreamer/dreamer_v2_single_task_raw_actions.py --mode here_no_doodad --exp_prefix <> --env <env name>

Robosuite

To train RAPS with Dreamer on an Robosuite Lift

python experiments/robosuite/dreamer/dreamer_v2_single_task_primitives_lift.py --mode here_no_doodad --exp_prefix <>

To train Raw Actions with Dreamer on an Robosuite Lift

python experiments/robosuite/dreamer/dreamer_v2_single_task_raw_actions_lift.py --mode here_no_doodad --exp_prefix <>

To train RAPS with Dreamer on an Robosuite Door

python experiments/robosuite/dreamer/dreamer_v2_single_task_primitives_door.py --mode here_no_doodad --exp_prefix <>

To train Raw Actions with Dreamer on an Robosuite Door

python experiments/robosuite/dreamer/dreamer_v2_single_task_raw_actions_door.py --mode here_no_doodad --exp_prefix <>

Learning Curve visualization

cd /path/to/raps/rlkit
python ../viskit/viskit/frontend.py data/<exp_prefix> //open localhost:5000 to view
Owner
Murtaza Dalal
Passionate about Machine Learning, Computer Vision, Robotics, and AI. Interested in seamlessly integrating software and hardware into into intelligent systems.
Murtaza Dalal
This repo holds codes of the ICCV21 paper: Visual Alignment Constraint for Continuous Sign Language Recognition.

VAC_CSLR This repo holds codes of the paper: Visual Alignment Constraint for Continuous Sign Language Recognition.(ICCV 2021) [paper] Prerequisites Th

Yuecong Min 64 Dec 19, 2022
A python script to dump all the challenges locally of a CTFd-based Capture the Flag.

A python script to dump all the challenges locally of a CTFd-based Capture the Flag. Features Connects and logins to a remote CTFd instance. Dumps all

Podalirius 77 Dec 07, 2022
Semi-Supervised Learning with Ladder Networks in Keras. Get 98% test accuracy on MNIST with just 100 labeled examples !

Semi-Supervised Learning with Ladder Networks in Keras This is an implementation of Ladder Network in Keras. Ladder network is a model for semi-superv

Divam Gupta 101 Sep 07, 2022
Starter Code for VALUE benchmark

StarterCode for VALUE Benchmark This is the starter code for VALUE Benchmark [website], [paper]. This repository currently supports all baseline model

VALUE Benchmark 73 Dec 09, 2022
Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Sami BARCHID 2 Oct 20, 2022
Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers

Motionformer This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this rep

Facebook Research 192 Dec 23, 2022
OpenL3: Open-source deep audio and image embeddings

OpenL3 OpenL3 is an open-source Python library for computing deep audio and image embeddings. Please refer to the documentation for detailed instructi

Music and Audio Research Laboratory - NYU 326 Jan 02, 2023
Generic ecosystem for feature extraction from aerial and satellite imagery

Note: Robosat is neither maintained not actively developed any longer by Mapbox. See this issue. The main developers (@daniel-j-h, @bkowshik) are no l

Mapbox 1.9k Jan 06, 2023
Diffusion Probabilistic Models for 3D Point Cloud Generation (CVPR 2021)

Diffusion Probabilistic Models for 3D Point Cloud Generation [Paper] [Code] The official code repository for our CVPR 2021 paper "Diffusion Probabilis

Shitong Luo 323 Jan 05, 2023
TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain Gait Recognition.

TraND This is the code for the paper "Jinkai Zheng, Xinchen Liu, Chenggang Yan, Jiyong Zhang, Wu Liu, Xiaoping Zhang and Tao Mei: TraND: Transferable

Jinkai Zheng 32 Apr 04, 2022
Retrieve and analysis data from SDSS (Sloan Digital Sky Survey)

Author: Behrouz Safari License: MIT sdss A python package for retrieving and analysing data from SDSS (Sloan Digital Sky Survey) Installation Install

Behrouz 3 Oct 28, 2022
Official implementation of TMANet.

Temporal Memory Attention for Video Semantic Segmentation, arxiv Introduction We propose a Temporal Memory Attention Network (TMANet) to adaptively in

wanghao 94 Dec 02, 2022
A developer interface for creating Chat AIs for the Chai app.

ChaiPy A developer interface for creating Chat AIs for the Chai app. Usage Local development A quick start guide is available here, with a minimal exa

Chai 28 Dec 28, 2022
Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

CLIP-GLaSS Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search An in-browser demo is

Federico Galatolo 172 Dec 22, 2022
PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020).

Scaffold-Federated-Learning PyTorch implementation of SCAFFOLD (Stochastic Controlled Averaging for Federated Learning, ICML 2020). Environment numpy=

KI 30 Dec 29, 2022
YOLO5Face: Why Reinventing a Face Detector (https://arxiv.org/abs/2105.12931)

Introduction Yolov5-face is a real-time,high accuracy face detection. Performance Single Scale Inference on VGA resolution(max side is equal to 640 an

DeepCam Shenzhen 1.4k Jan 07, 2023
MinHash, LSH, LSH Forest, Weighted MinHash, HyperLogLog, HyperLogLog++, LSH Ensemble

datasketch: Big Data Looks Small datasketch gives you probabilistic data structures that can process and search very large amount of data super fast,

Eric Zhu 1.9k Jan 07, 2023
ICON: Implicit Clothed humans Obtained from Normals

ICON: Implicit Clothed humans Obtained from Normals arXiv, December 2021. Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black Table of C

Yuliang Xiu 1.1k Dec 30, 2022
Official implementation of NPMs: Neural Parametric Models for 3D Deformable Shapes - ICCV 2021

NPMs: Neural Parametric Models Project Page | Paper | ArXiv | Video NPMs: Neural Parametric Models for 3D Deformable Shapes Pablo Palafox, Aljaz Bozic

PabloPalafox 109 Nov 22, 2022
The GitHub repository for the paper: “Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction“.

SCINet This is the original PyTorch implementation of the following work: Time Series is a Special Sequence: Forecasting with Sample Convolution and I

386 Jan 01, 2023