Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction

Related tags

Deep LearningUFLoss
Overview

Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction

Official github repository for the paper High Fidelity Deep Learning-based MRI Reconstruction with Instance-wise Discriminative Feature Matching Loss. In this work, a novel patch-based Unsupervised Feature loss (UFLoss) is proposed and incorporated into the training of DL-based reconstruction frameworks in order to preserve perceptual similarity and high-order statistics. In-vivo experiments indicate that adding the UFLoss encourages sharper edges with higher overall image quality under DL-based reconstruction framework. Our implementations are in PyTorch

Installation

To use this package, install the required python packages (tested with python 3.8 on Ubuntu 20.04 LTS):

pip install -r requirements.txt

Dataset

We used a subset of FastMRI knee dataset for the training and evaluation. We used E-SPIRiT to pre-compute sensitivity maps using BART. Post-processed data (including Sens Maps, Coil combined images) and pre-trained model can be requested by emailing [email protected].

Update We provide our data-preprocessing code at UFloss_training/data_preprocessing.py. This script computes the sensitivity maps and performs data normalization and coil combination. BART toolbox is required for computing the sensitivity maps. Follow the installation instructions on the website and add the following lines to your .bashrc file.

/python/" export PATH=" :$PATH"">
export PYTHONPATH="${PYTHONPATH}:
    
     /python/
     "
    
export PATH="
    
     :
     $PATH
     "
    

To run the data-preprocessing code, download and unzip the fastMRI Multi-coil knee dataset. Simplu run

python data_preprocessing.py -l <path to your fastMRI multi-coil dataset> -t <target directory> -c <size for your E-SPIRiT calibration region>

Step 0: Patch Extraction

To extract patches from the fully-smapled training data, go to the UFloss_training/ folder and run patch_extraction.py to extract patches. Please specify the directories of the training dataset and the target folder. Instructions are avaible by runing:

python patch_extraction.py -h

Step 1: Train the UFLoss feature mapping network

To train the UFLoss feature mapping network, go to the UFloss_training/ folder and run patch_learning.py. We provide a demo training script to perform the training on fully-sampled patches:

bash launch_training_patch_learning.sh

Visualiztion (Patch retrival results, shown below) script will be available soon.

Step 2: Train the DL-based reconstruction with UFLoss

To train the DL-based reconstruction with UFLoss, we provide our source code here at DL_Recon_UFLoss/. We adoped MoDL as our DL-based reconstruction network. We provide training scripts for MoDL with and without UFLoss at DL_Recon_UFLoss/models/unrolled2D/scripts:

bash launch_training_MoDL_traditional_UFLoss_256_demo.sh

You can easily paly around with the parameters by editing the training script. One representative reconstruction results is shown as below.

Perform inference with the trained model

To perform the inference reconstruction on the testing set, we provide an inference script at DL_Recon_UFLoss/models/unrolled2D/inference_ufloss.py. run the following command for inference:

python inference_ufloss.py --data-path <Path to the dataset> 
                        --device-num <Which device to train on>
                        --exp-dir <Path where the results should be saved>
                        --checkpoint <Path to an existing checkpoint>

Acknoledgements

Reconstruction code borrows heavily from fastMRI Github repo and DL-ESPIRiT by Christopher Sandino. This work is a colaboration between UC Berkeley and GE Healthcare. Please contact [email protected] if you have any questions.

Citation

If you find this code useful for your research, please consider citing our paper High Fidelity Deep Learning-based MRI Reconstruction with Instance-wise Discriminative Feature Matching Loss:

@article{wang2021high,
  title={High Fidelity Deep Learning-based MRI Reconstruction with Instance-wise Discriminative Feature Matching Loss},
  author={Wang, Ke and Tamir, Jonathan I and De Goyeneche, Alfredo and Wollner, Uri and Brada, Rafi and Yu, Stella and Lustig, Michael},
  journal={arXiv preprint arXiv:2108.12460},
  year={2021}
}
Image Matching Evaluation

Image Matching Evaluation (IME) IME provides to test any feature matching algorithm on datasets containing ground-truth homographies. Also, one can re

32 Nov 17, 2022
The CLRS Algorithmic Reasoning Benchmark

Learning representations of algorithms is an emerging area of machine learning, seeking to bridge concepts from neural networks with classical algorithms.

DeepMind 251 Jan 05, 2023
An unofficial personal implementation of UM-Adapt, specifically to tackle joint estimation of panoptic segmentation and depth prediction for autonomous driving datasets.

Semisupervised Multitask Learning This repository is an unofficial and slightly modified implementation of UM-Adapt[1] using PyTorch. This code primar

Abhinav Atrishi 11 Nov 25, 2022
Official code repository for the work: "The Implicit Values of A Good Hand Shake: Handheld Multi-Frame Neural Depth Refinement"

Handheld Multi-Frame Neural Depth Refinement This is the official code repository for the work: The Implicit Values of A Good Hand Shake: Handheld Mul

55 Dec 14, 2022
PyGCL: A PyTorch Library for Graph Contrastive Learning

PyGCL is a PyTorch-based open-source Graph Contrastive Learning (GCL) library, which features modularized GCL components from published papers, standa

PyGCL 588 Dec 31, 2022
[NeurIPS 2021] Garment4D: Garment Reconstruction from Point Cloud Sequences

Garment4D [PDF] | [OpenReview] | [Project Page] Overview This is the codebase for our NeurIPS 2021 paper Garment4D: Garment Reconstruction from Point

Fangzhou Hong 112 Dec 23, 2022
Read and write layered TIFF ImageSourceData and ImageResources tags

Read and write layered TIFF ImageSourceData and ImageResources tags Psdtags is a Python library to read and write the Adobe Photoshop(r) specific Imag

Christoph Gohlke 4 Feb 05, 2022
Official implementation for "QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation" (CVPR 2022)

QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation (CVPR2022) https://arxiv.org/abs/2203.08483 Unpaired image-to-image (I2I

Xueqi Hu 50 Dec 16, 2022
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends)

General purpose GPU compute framework for cross vendor graphics cards (AMD, Qualcomm, NVIDIA & friends). Blazing fast, mobile-enabled, asynchronous and optimized for advanced GPU data processing usec

The Kompute Project 1k Jan 06, 2023
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022
Code implementation of Data Efficient Stagewise Knowledge Distillation paper.

Data Efficient Stagewise Knowledge Distillation Table of Contents Data Efficient Stagewise Knowledge Distillation Table of Contents Requirements Image

IvLabs 112 Dec 02, 2022
Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021)

HAIS Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021) by Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang*. (*) Corresp

Hust Visual Learning Team 145 Jan 05, 2023
Audio2Face - Audio To Face With Python

Audio2Face Discription We create a project that transforms audio to blendshape w

FACEGOOD 724 Dec 26, 2022
Deep Learning Slide Captcha

滑动验证码深度学习识别 本项目使用深度学习 YOLOV3 模型来识别滑动验证码缺口,基于 https://github.com/eriklindernoren/PyTorch-YOLOv3 修改。 只需要几百张缺口标注图片即可训练出精度高的识别模型,识别效果样例: 克隆项目 运行命令: git cl

Python3WebSpider 55 Jan 02, 2023
Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces

This repository contains source code for the paper Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces a

9 Nov 21, 2022
Repository for self-supervised landmark discovery

self-supervised-landmarks Repository for self-supervised landmark discovery Requirements pytorch pynrrd (for 3d images) Usage The use of this models i

Riddhish Bhalodia 2 Apr 18, 2022
Code for our paper 'Generalized Category Discovery'

Generalized Category Discovery This repo is a placeholder for code for our paper: Generalized Category Discovery Abstract: In this paper, we consider

107 Dec 28, 2022
LETR: Line Segment Detection Using Transformers without Edges

LETR: Line Segment Detection Using Transformers without Edges Introduction This repository contains the official code and pretrained models for Line S

mlpc-ucsd 157 Jan 06, 2023
A project that uses optical flow and machine learning to detect aimhacking in video clips.

waldo-anticheat A project that aims to use optical flow and machine learning to visually detect cheating or hacking in video clips from fps games. Che

waldo.vision 542 Dec 03, 2022